首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A commercial direct laser writing (DLW) system operating at 1070 nm was used to fabricate SiO2 optical waveguides on silicon wafers. A Ti-doped SiO2 Sol-Gel film was deposited on the SiO2/Si substrate by the dip-coating technique, based on which SiO2 optical waveguides were patterned by DLW using a Ytterbium fiber laser and followed by chemical etching. The effects of laser parameters and the preheated temperature of Sol-Gel films on the dimensions of optical waveguides were studied systematically. The differences of etching rate between laser irradiated and non-irradiated areas in Sol-Gel films preheated at various temperatures are characterized by measuring the thickness of the films. Results demonstrate that the available laser power density range for laser densification and the width of the patterned optical waveguides are influenced strongly by the preheated temperature of the Sol-Gel films. The width of the optimized optical waveguide in this work is 25 μm. The minimum propagation loss of the fabricated optical waveguides is 1.7 dB cm−1 at the wavelength of 1550 nm.  相似文献   

2.
Three different gases (nitrogen (N2), oxygen (O2) and argon (Ar)) were used as background gases during the growth of pulsed laser deposition (PLD) Y2SiO5:Ce thin films. A Krypton fluoride laser (KrF), 248 nm was used for the PLD of the films on silicon (Si) (1 0 0) substrates. The effect of the background gases on the surface morphology, crystal growth and luminescent properties were investigated. All the experimental parameters, the gas pressure (455 mT), the substrate temperature (600 °C), the pulse frequency (8 Hz), the number of pulses (4000) and the laser fluence (1.6±0.2) J/cm2 were kept constant. The only parameter that was changed during the deposition was the ambient gas species. The surface morphology and average particle sizes were monitored with scanning electron microscopy (SEM) and atomic force microscopy (AFM). X-ray diffraction (XRD) and Auger electron spectroscopy (AES) were used to determine the crystal structure and composition, respectively. Cathodo- (CL) and photoluminescence (PL) were used to measure the luminescent intensities for the different phosphor thin films. The nature of the particles, ablated on the substrate, is related to the collisions between the ejected particles and the ambient gas particles. The CL and PL intensities also depend on the particle sizes. A 144 h (coulomb dose of 1.4×104 C cm−2) electron degradation study on the thin films ablated in the Ar gas environment resulted in a decrease in the main CL intensity peak at 440 nm and to the development of a new very broad luminescent peak spectra ranging from 400 to 850 nm due to the growth of a SiO2 layer on the surface.  相似文献   

3.
In order to study the long-pulsed laser induced damage performance of optical thin films, damage experiments of TiO2/SiO2 films irradiated by a laser with 1 ms pulse duration and 1064 nm wavelength are performed. In the experiments, the damage threshold of the thin films is measured. The damages are observed to occur in isolated spots, which enlighten the inducement of the defects and impurities originated in the films. The threshold goes down when the laser spot size decreases. But there exists a minimum threshold, which cannot be further reduced by decreasing the laser spot size. Optical microscopy reveals a cone-shaped cavity in the film substrate. Changes of the damaged sizes in film components with laser fluence are also investigated. The results show that the damage efficiency increases with the laser fluence before the shielding effects start to act.  相似文献   

4.
We have developed low temperature formation methods of SiO2 layers which are applicable to gate oxide layers in thin film transistors (TFT) by use of nitric acid (HNO3). Thick (>10 nm) SiO2 layers with good thickness uniformity (i.e., ±4%) can be formed on 32 cm × 40 cm substrates by the two-step nitric acid oxidation method in which initial and subsequent oxidation is performed using 40 and 68 wt% (azeotropic mixture) HNO3 aqueous solutions, respectively. The nitric acid oxidation of polycrystalline Si (poly-Si) thin films greatly decreases the height of ridge structure present on the poly-Si surfaces. When poly-Si thin films on 32 cm × 40 cm glass substrates are oxidized at azeotropic point (i.e., 68 wt% HNO3 aqueous solutions at 121 °C), ultrathin (i.e., 1.1 nm) SiO2 layers with a good thickness uniformity (±0.05 nm) are formed on the poly-Si surfaces. When SiO2/Si structure fabricated using plasma-enhanced chemical vapor deposition is immersed in 68 wt% HNO3, oxide fixed charge density is greatly decreased, and interface states are eliminated. The fixed charge density is further decreased by heat treatments at 200 °C, and consequently, capacitance-voltage characteristics which are as good as those of thermal SiO2/Si structure are achieved.  相似文献   

5.
TiO2 film of around 850 nm in thickness was deposited on a soda-lime glass by PVD sputtering and irradiated using one pulse of krypton-fluorine (KrF) excimer laser (wavelength of 248 nm and pulse duration of 25 ns) with varying fluence. The color of the irradiated area became darker with increasing laser fluence. Irradiated surfaces were characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Surface undergoes thermal annealing at low laser fluence of 400 and 590 mJ/cm2. Microcracks at medium laser fluence of 1000 mJ/cm2 are attributed to surface melting and solidification. Hydrodynamic ablation is proposed to explain the formation of micropores and networks at higher laser fluence of 1100 and 1200 mJ/cm2. The darkening effect is explained in terms of trapping of light in the surface defects formed rather than anatase to rutile phase transformation as reported by others. Controlled darkening of TiO2 film might be used for adjustable filters.  相似文献   

6.
Silicon dioxide (SiO2) films were selectively fabricated on a Si substrate at room temperature by illuminating both the silicone rubber target and the substrate with an F2 laser (157 nm). The laser fluence was much less than the ablation threshold. Absorption due to absorbed water (H2O) and hydrogen-bonded silanol (SiOH) groups were observed in addition to absorption due to Si-O-Si stretching mode in the Fourier transform infrared spectroscopy (FT-IR) spectra of the films. The illumination with higher laser fluence caused an increase of Si-O-Si/OH peak ratio in the FT-IR spectra, a decrease of etching rate in hydrofluoric acid (HF) solution, and an increase in the refractive index close to the value of a thermal SiO2 film. These results indicate that the quality of the grown SiO2 films was improved. The high photon energy of F2 laser induced photodissociation of main chains and side chains of silicone and oxygen (O2), and bonds between the ejected gaseous molecules including Si and O(1D) to form SiO2 films. PACS 61.80.Ba; 81.15.Fg; 82.50.Hp  相似文献   

7.
The effect of laser ablation on copper foil irradiated by a short 30 ns laser pulse was investigated by X-ray photoelectron spectroscopy. The laser fluence was varied from 8 to 16.5 J/cm2 and the velocity of the laser beam from 10 to 100 mm/s. This range of laser fluence is characterized by a different intensity of laser ablation. The experiments were done in two kinds of ambient atmosphere: air and argon jet gas.The chemical state and composition of the irradiated copper surface were determined using the modified Auger parameter (α′) and O/Cu intensity ratio. The ablation atmosphere was found to influence the size and chemical state of the copper particles deposited from the vapor plume. During irradiation in air atmosphere the copper nanoparticles react with oxygen and water vapor from the air and are deposited in the form of a CuO and Cu(OH)2 thin film. In argon atmosphere the processed copper surface is oxidized after exposure to air.  相似文献   

8.
Bi0.8La0.2FeO3/CoFe2O4 (BLFO/CFO) multilayer thin films (totally 20 layers BLFO and 19 layers CFO) were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. X-ray diffraction and transmission electron microscope measurements show that the films are polycrystalline and consisted of multilayered structure. Ferroelectric hysteresis loops with remnant polarization and saturated polarization of 4.2 and 13.3 μC/cm2, respectively, were observed. On the other hand, the films show well-shaped magnetization hysteresis loops with saturated and remnant magnetization of 34.7 and 11.4 emu/cm3, respectively, which are significantly larger than pure BLFO thin films deposited under the same conditions. These results indicate that constructing epitaxial superlattice might be a promising way to fabricate multiferroics with improved properties.  相似文献   

9.
Pb1−XLaXTiO3 thin films, (X=0.0; 13 and 0.27 mol%) were prepared by the polymeric precursor method. Thin films were deposited on Pt/Ti/SiO2/Si (1 1 1), Si (1 0 0) and glass substrates by spin coating, and annealed in the 200-300°C range in an O2 atmosphere. X-ray diffraction, scanning electron microscopy and atomic force microscopy were used for the microstructural characterization of the thin films. Photoluminescence (PL) at room temperature has been observed in thin films of (PbLa)TiO3. The films deposited on Pt/Ti/SiO2/Si substrates present PL intensity greater than those deposited on glass and silicon substrates. The intensity of PL in these thin films was found to be dependent on the thermal treatment and lanthanum molar concentration.  相似文献   

10.
Bi3TiNbO9:Er3+:Yb3+ (BTNEY) thin films were fabricated on fused silica by pulsed laser deposition. It was demonstrated that different laser fluence and substrate temperature during growth of BTNEY upconversion photoluminescence (UC-PL) samples control the film’s grain size and hence influences the UC-PL properties. The average grain size of BTNEY thin films deposited on fused silica substrates with laser fluence 4, 5, 6, and 7 J/cm2 are 30.8, 35.9, 40.6, and 43.4 nm, respectively. The 525 nm emission intensities increase with the deposition laser fluence and the emission intensities of BTNEY thin film deposited under 700 and 600 °C are almost 24 and 4 times, respectively, as strong as those of samples under 500 °C. The grain size of BTNEY thin film increases with the increasing temperature. UC-PL of BTNEY films is enhanced by increasing grain size of the films.  相似文献   

11.
The synthesis by pulsed laser deposition technique of zinc oxide thin films suitable for gas sensing applications is herein reported. The ZnO targets were irradiated by an UV KrF* (λ = 248 nm, τFWHM ∼7 ns) excimer laser source, operated at 2.8 J/cm2 incident fluence value, whilst the substrates consisted of SiO2(0 0 1) wafers heated at 150 °C during the thin films growth process. The experiments were performed in an oxygen dynamic pressure of 10 Pa. Structural and optical properties of the thin films were investigated. The obtained results have demonstrated that the films are c-axis oriented. Their average transmission in the visible-infrared spectral region was found to be about 85%. The equivalent refractive indexes and extinction coefficients were very close to those of the tabulated reference values. Doping with 0.5% Au and coating with 100 pulses of Au clusters caused but a very slight decrease (with a few percent) of both transmission and refractive index values. The coatings with the most appropriate optical properties as waveguides have been selected and their behavior was tested for butane sensing.  相似文献   

12.
Si:SbOx films have been deposited by reactive dc-magnetron sputtering from a Sb target with Si chips attached in Ar + O2 with the relative O2 content 7%. The as-deposited films contained Sb metal, Sb2O3, SiO, Si2O3 and SiO2. The crystallization of Sb was responsible for the changes of optical properties of the films. The results of the blue laser recording test showed that the films had good writing sensitivity for blue laser beam (406.7 nm), and the recording marks were still clear even if the films were deposited in air 60 days, which demonstrated that doping silicon in SbOx films can improve the stability of SbOx films. High reflectivity contrast of about 36% was obtained at a writing power 6 mW and writing pulse width 300 ns.  相似文献   

13.
We study the surface chemicals and structures of aluminum plates irradiated by scanning femtosecond laser pulses in air for a wide range of laser fluence from 0.38 to 33.6 J/cm2. X-ray photoelectron spectroscopy and X-ray diffraction analyses indicate clearly that crystalline anorthic Al(OH)3 is formed under femtosecond laser pulse irradiation. Besides aluminum hydroxide, crystalline Al2O3 is also found in the samples irradiated at high laser fluence. Field emission scanning electron microscopy demonstrates that the surfaces of the samples irradiated with low laser fluence are colloidal-like and that nanoparticles with a few nanometers in size are embedded in glue-like substances. For high laser fluence irradiated samples, the surfaces are highly porous and covered by nanoparticles with uniform size of less than 20 nm.  相似文献   

14.
We have investigated cathodeluminescence (CL) of Ge implanted SiO2:Ge and GeO2:Ge films. The GeO2 films were grown by oxidation of Ge substrate at 550 °C for 3 h in O2 gas flow. The GeO2 films on Ge substrate and SiO2 films on Si substrate were implanted with Ge-negative ions. The implanted Ge atom concentrations in the films were ranging from 0.1 to 6.0 at%. To produce Ge nanoparticles the SiO2:Ge films were thermally annealed at various temperatures of 600-900 °C for 1 h in N2 gas flow. An XPS analysis has shown that the implanted Ge atoms were partly oxidized. CL was observed at wavelengths around 400 nm from the GeO2 films before and after Ge-implantation as well as from SiO2:Ge films. After Ge-implantation of about 0.5 at% the CL intensity has increased by about four times. However, the CL intensity from the GeO2:Ge films was several orders of magnitude smaller than the intensity from the 800 °C-annealed SiO2:Ge films with 0.5 at% of Ge atomic concentration. These results suggested that the luminescence was generated due to oxidation of Ge nanoparticles in the SiO2:Ge films.  相似文献   

15.
The general equation Tove = L cos  θ ln(Rexp/R0 + 1) for the thickness measurement of thin oxide films by X-ray photoelectron spectroscopy (XPS) was applied to a HfO2/SiO2/Si(1 0 0) as a thin hetero-oxide film system with an interfacial oxide layer. The contribution of the thick interfacial SiO2 layer to the thickness of the HfO2 overlayer was counterbalanced by multiplying the ratio between the intensity of Si4+ from a thick SiO2 film and that of Si0 from a Si(1 0 0) substrate to the intensity of Si4+ from the HfO2/SiO2/Si(1 0 0) film. With this approximation, the thickness levels of the HfO2 overlayers showed a small standard deviation of 0.03 nm in a series of HfO2 (2 nm)/SiO2 (2-6 nm)/Si(1 0 0) films. Mutual calibration with XPS and transmission electron microscopy (TEM) was used to verify the thickness of HfO2 overlayers in a series of HfO2 (1-4 nm)/SiO2 (3 nm)/Si(1 0 0) films. From the linear relation between the thickness values derived from XPS and TEM, the effective attenuation length of the photoelectrons and the thickness of the HfO2 overlayer could be determined.  相似文献   

16.
Single-phase β-FeSi2 films on silicon (1 0 0) were fabricated by pulse laser deposition. The structure and crystal quality of the samples were characterized by X-ray diffraction and Fourier transform infrared spectroscopy. The field scanning electron microscopy showed that the film thickness increases with the increasing of the laser fluence. Moreover, atomic force microscopy observations revealed the changes of surface properties with different laser fluence. Based upon all experimental results, it is found that 7 J/cm2 is the most favorable for the formation of β-FeSi2 thin films.  相似文献   

17.
The CaCu3Ti4O12/SiO2/CaCu3Ti4O12 (CCTO/SiO2/CCTO) multilayered films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition method. It has been demonstrated that the dielectric loss and the leakage current density were significantly reduced with the increase of the SiO2 layer thickness, accompanied with a decrease of the dielectric constant. The CCTO film with a 20 nm SiO2 layer showed a dielectric loss of 0.065 at 100 kHz and the leakage current density of 6×10−7 A/cm2 at 100 kV/cm, which were much lower than those of the single layer CCTO films. The improvement of the electric properties is ascribed to two reasons: one is the improved crystallinity; the other is the reduced free carriers in the multilayered films.  相似文献   

18.
La-substituted BiFeO3, Bi0.8La0.2FeO3, thin films were fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. X-ray diffraction and high-resolution transmission electron microscope were used to analyze the structures of the films. The results show the films fabricated under optimized growth condition are (0 1 2) textured. X-ray photoemission spectroscopy results indicate that the oxidation state of Fe ion is Fe3+ in the films without detectable Fe2+. The films show low leakage current and excellent dielectric characters. Multiferroic properties with a remnant ferroelectric polarization of 5.2 μC/cm2 and a remanent magnetization of 0.02 μB/Fe were established. These results have some implications for further research.  相似文献   

19.
Titanium dioxide thin films have been deposited by reactive magnetron sputtering on glass substrate and subsequently irradiated by UV radiation using a KrF excimer laser. In this work, we have study the influence of the laser fluence (F) ranging between 0.05 and 0.40 mJ/cm2 on the constitution and microstructure of the deposited films. Irradiated thin films are characterized by profilometry, scanning electron microscopy and X-ray diffraction. As deposited films are amorphous, while irradiated films present an anatase structure. The crystallinity of the films strongly varies as a function of F with maximum for F = 0.125 J/cm2. In addition to the modification of their constitution, the irradiated areas present a strongly modified microstructure with appearance of nanoscale features. The physico-chemical mechanisms of these structural modifications are discussed based on the theory of nucleation.  相似文献   

20.
Ba(Zr0.05Ti0.95)O3 (BZT) thin films grown on Pt/Ti/SiO2/Si(1 0 0) substrates were prepared by chemical solution deposition. The structural and surface morphology of BZT thin films has been studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that the random oriented BZT thin film grown on Pt/Ti/SiO2/Si(1 0 0) substrate with a perovskite phase. The SEM surface image showed that the BZT thin film was crack-free. And the average grain size and thickness of the BZT film are 35 and 400 nm, respectively. Furthermore, the chemical states and chemical composition of the films were determined by X-ray photoelectron spectroscopy (XPS) near the surface. The XPS results show that Ba, Ti, and Zr exist mainly in the forms of BZT perovskite structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号