首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Four sources of cellulose with different molecular weights were dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate at 100 °C over a 10 h period. The solution densities were determined and these results were subsequently utilised to access the influence of dissolved cellulose on surface tension properties of cellulose/ionic liquid solutions. Surface tension measurements revealed increasing molecular weight and concentration reduced surface tension while temperature increases showed the opposite effect. These results are consistent with that of repulsive polymer-wall interactions near the interface in good solvent conditions. The semi-flexible nature of this carbohydrate in solution can help explain deviations of these results when compared to ideal flexible chains.  相似文献   

2.
Cellulose acetate (CA) is one on the most important cellulose derivatives. The use of ionic liquids in cellulose processing was recently discovered to not exclusively act as a solvent but also as a reagent. Recent studies showed that bulky chlorides as well as acetyl chloride mixed with ionic liquids can facilitate cellulose acetylation. This work focused on a simple chloro-organic cosolvent, dichloromethane (DCM), and showed the ability of this relatively small molecule, mixed with the ionic liquid, to facilitate homogenous acetylation by displacement of the acetate ion of the ionic liquid with a chloride ion. Maximal acetylation achieved by this method was a degree of substitution (DS) of 1.9, were only a small fraction of DCM was utilized for acetylation, well below even that expected for equimolar reaction. The degree of substitution was controlled by the dichloromethane content, thus controlling its solubility in water. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2458–2462  相似文献   

3.
An important step in developing ionic-liquid-based electrolytes for lithium rechargeable batteries is obtaining a molecular-level understanding of the ionic interactions that occur in these systems. In this study, 1-ethyl-3-methylimidazolium trifluoromethansulfonate ([C2mim]CF3SO3) is complexed with LiCF3SO3, and the local structures of the CF3SO3- and [C2mim]+ ions are investigated with infrared and Raman spectroscopy. The isolation and subsequent refinement of a Li[C2mim](CF3SO3)2 crystal provides further insight into the structure of the [C2mim]CF3SO3-LiCF3SO3 solutions. Minor changes are observed in the infrared and Raman spectra of dilute [C2mim]CF3SO3-LiCF3SO3 solutions compared to pure [C2mim]CF3SO3. However, a suspension of very small Li[C2mim](CF3SO3)2 crystallites forms at a solution composition of [C2mim]CF3SO3:LiCF3SO3 = 10:1 (mole ratio), placing an upper limit on the solubility of LiCF3SO3. Essentially no changes are observed in the vibrational modes of the [C2mim]+ cations over the entire range of LiCF3SO3 compositions studied, suggesting that the addition of these compounds does not significantly perturb the local structure of the [C2mim]+ cations. The salt used in this study has a common anion with the ionic liquid; thus, the ion cloud surrounding the [C2mim]+ ions, which must be primarily composed of CF3SO3- anions, is not significantly altered with the addition of LiCF3SO3.  相似文献   

4.
In order to better understand the volatilization process for ionic liquids, the vapor evolved from heating the ionic liquid 1-ethyl-3-methylimidazolium bromide (EMIM(+)Br(-)) was analyzed via tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry (VUV-PI-TOFMS) and thermogravimetric analysis mass spectrometry (TGA-MS). For this ionic liquid, the experimental results indicate that vaporization takes place via the evolution of alkyl bromides and alkylimidazoles, presumably through alkyl abstraction via an S(N)2 type mechanism, and that vaporization of intact ion pairs or the formation of carbenes is negligible. Activation enthalpies for the formation of the methyl and ethyl bromides were evaluated experimentally, ΔH(?)(CH(3)Br) = 116.1 ± 6.6 kJ/mol and ΔH(?)(CH(3)CH(2)Br) = 122.9 ± 7.2 kJ/mol, and the results are found to be in agreement with calculated values for the S(N)2 reactions. Comparisons of product photoionization efficiency (PIE) curves with literature data are in good agreement, and ab initio thermodynamics calculations are presented as further evidence for the proposed thermal decomposition mechanism. Estimates for the enthalpy of vaporization of EMIM(+)Br(-) and, by comparison, 1-butyl-3-methylimidazolium bromide (BMIM(+)Br(-)) from molecular dynamics calculations and their gas phase enthalpies of formation obtained by G4 calculations yield estimates for the ionic liquids' enthalpies of formation in the liquid phase: ΔH(vap)(298 K) (EMIM(+)Br(-)) = 168 ± 20 kJ/mol, ΔH(f,?gas)(298 K) (EMIM(+)Br(-)) = 38.4 ± 10 kJ/mol, ΔH(f,?liq)(298 K) (EMIM(+)Br(-)) = -130 ± 22 kJ/mol, ΔH(f,?gas)(298 K) (BMIM(+)Br(-)) = -5.6 ± 10 kJ/mol, and ΔH(f,?liq)(298 K) (BMIM(+)Br(-)) = -180 ± 20 kJ/mol.  相似文献   

5.
Air and moisture stable ionic liquid like 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMICF3SO3) has been used as an electrolyte for the electrooxidative polymerization of pyrrole; the morphological structure of polypyrrole film formed on the anode was greatly affected, and the polymerization rate, electrochemical capacity and electroconductivity were significantly increased. Furthermore, it was also found that EMICF3SO3 could be recovered by a simple extraction of the remaining pyrrole monomer from the ionic liquid after use, and then reused without significant loss of reactivity for the polymerization.  相似文献   

6.
The ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([emim][OAc]) readily dissolves high concentrations of cellulose. However, the high viscosity of [emim][OAc] (162 cP at 20 °C) could limit its use as a solvent for cellulose. Dissolved CO2 has been shown to decrease the viscosity of ILs. In this study, a 50 psi CO2 environment was applied for the dissolution of cellulose in [emim][OAc] to determine if the cellulose dissolution could be enhanced. Dissolution profiles of 4 wt% cellulose dissolved in [emim][OAc] were obtained over a 24 h period. A 75% increase in the amount of dissolved cellulose was observed with the application of a 50 psi CO2 environment.  相似文献   

7.
Diluted solutions of cellulose and hydroxypropylcellulose in 1-ethyl-3-methylimidazolium acetate were studied by the method of static light scattering. Mean molecular masses and the size of the particles of the studied polymers in solution, as well as the values of the second virial coefficient are reported.  相似文献   

8.
In this study, environmentally friendly regenerated cellulose films with enhanced tensile strength were successfully prepared by incorporation of plasticizer agents using 1-ethyl-3-methylimidazolium acetate as solvent. The results of morphology from scanning electron microscopy and atomic force microscopy showed that cellulose films possessed homogeneously, and exhibited smooth structure. 13C CP/MAS NMR spectra showed that the regenerated cellulose films were transferred from cellulose I to cellulose II. Moreover, the incorporation of plasticizer agents, especially in the presence of glycerol, significantly improved the tensile strength of cellulose film (143 MPa) as compared to the controlled sample. The notable properties of the regenerated cellulose films are promising for applications in transparent packaging.  相似文献   

9.
The density and surface tension of 1-methyl-3-methylimidazolium dimethylphosphate, [C1mim](CH3O)2PO2 and 1-ethyl-3-methylimidazolium diethylphosphate, [C2mim](CH3CH2O)2PO2 ionic liquids have been measured over the temperature range from (283.15 to 338.15) K. The coefficients of thermal expansion were calculated from the experimental density results using an empirical correlation for T = (283.15 to 338.15) K. Molecular volume and standard entropies of these ILs were calculated from the experimental density values. The surface properties of ILs were investigated. The critical temperature and enthalpy of vapourization were also discussed.  相似文献   

10.
离子液体(ionic liquids)是在室温下液态的一种熔融盐,又称为室温离子液体,一般由有机阳离子和无机阴离子或者有机阴离子构成,可以通过调节阴阳离子的种类来改变离子液体的性能,因此敢称为一种"可以设计的溶剂".  相似文献   

11.
This paper reports densities of aqueous of liquid (IL) 3-ethyl-1-methylimidazolium ethyl sulfate (EMISE). The apparent molal volume, partial molal volume and Pitzer’s parameters of EMISE were obtain.  相似文献   

12.

Abstract  

The ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) is considered to be an inert solvent of cellulose and lignocellulosic biomass. Acetylation (1.7% mol, or DS 0.017) of cellulose after dissolution in technical grade [C2mim]OAc (150 °C for 20 min), is demonstrated by compositional analysis, FTIR analysis and 13C NMR spectroscopy (in [C2mim]OAc with 13C enriched acetate). This acetylation, in the absence of added acylating agents, has not been reported before and may limit [C2mim]OAc utility in industrial scale biomass processing, even at this low extent. For example, cellulose acetylation may contribute to IL loss in processes where the IL is recovered and reused and inhibit enzyme saccharification of cellulose in lignocellulosic biofuel production processes based on saccharification and fermentation.  相似文献   

13.
Collagen/cellulose blended solutions with collagen/cellulose mass ratio (Col/Cel) of 0, 1/40, 1/20, 1/10 and 1/5 were prepared using [Emim]Ac as solvent. The interactions between the two polymers before and after regeneration were investigated. In steady shear flow, all of the experimental viscosity values were greater than those of the estimated values calculated from the log-additivity rule for each sample, suggesting interactions between the two polymers in solutions. All solutions exhibited shear thinning behavior and the flow curves could be described by Cross model. Zero shear viscosity (η 0) versus Col/Cel was examined and a linear increase (from 8.73 to 16.39 Pa·s) can be observed for η 0 as Col/Cel ≤ 1/10, while there was only a slight increase (from 16.39 to 18.42 Pa·s) in η 0 as Col/Cel increased to 1/5. Dynamic rheology results suggested the existence of aggregates in solution with Col/Cel = 1/10. Furthermore, the activation energy of solution was 84.5 kJ mol?1 as Col/Cel = 1/10, higher than that of cellulose solution (44.2 kJ mol?1). Regenerated films were prepared and characterized to trace back the interactions between the two polymers in [Emim]Ac. Fourier transform infrared spectroscopy indicated the hydrogen-bond interaction between collagen and cellulose in films. The denaturation temperature of collagen in films with Col/Cel ≤ 1/10 could be improved, but it was decreased with the increase of collagen content, and finally was reduced to be close to that of collagen as Col/Cel = 1/5. The features of dynamic mechanical analysis for films were indicative of the lack of homogeneity between collagen and cellulose as Col/Cel = 1/5. Atomic force microscopy images further confirmed the phase-separation when Col/Cel = 1/5.  相似文献   

14.
A new method of obtaining molecular reorientational dynamics from 13C spin-lattice relaxation data of aromatic carbons in viscous solutions is applied to 13C relaxation data of both the cation and anion in the ionic liquid, 1-ethyl-3-methylimidazolium butanesulfonate ([EMIM]BSO3). 13C pseudorotational correlation times are used to calculate corrected maximum NOE factors from a combined isotropic dipolar and nuclear Overhauser effect (NOE) equation. These corrected maximum NOE factors are then used to determine the dipolar relaxation rate part of the total relaxation rate for each aromatic 13C nucleus in the imidazolium ring. Rotational correlation times are compared with viscosity data and indicate several [EMIM]BSO3 phase changes over the temperature range from 278 to 328 K. Modifications of the Stokes-Einstein-Debye (SED) model are used to determine molecular radii for the 1-ethyl-3-methylimidazolium cation. The Hu-Zwanzig correction yields a cationic radius that compares favorably with a DFT gas-phase calculation, B3LYP/(6-311+G(2d,p)). Chemical shift anisotropy values, Deltasigma, are obtained for the ring and immediately adjacent methylene and methyl carbons in the imidazolium cation and for the three carbon atoms nearest to the sulfonate group in the anion.  相似文献   

15.
Thermophysical behavior of the binary system [water + 1-ethyl-3-methylimidazolium tricyanomethanide ionic liquid (IL)] was thoroughly characterized through systematic measurements of (vapor + liquid) equilibria (water activity aw), mixing enthalpy, density, viscosity, and refractive index. The measurements were performed in the entire composition range and/or specifically in the highly dilute IL region, at T = 298.15 K or as a function of temperature in the range from (288.15 to 318.15) K. Effective experimental methods minimizing IL sample consumption, using flow arrangements, instrument couplings and high degree of automation were preferably employed. In particular, the aw determination based on the chilled-mirror dew point technique and implemented by an AquaLab 4TE instrument was identified as a generally superior approach to study VLE of (water + IL) systems. Excess thermodynamic properties (Gibbs free energy, enthalpy, heat capacity, and volume) and property deviations from the linear mixing rule (viscosity, refractive index) were evaluated, Padé approximants being used to correlate adequately their complex composition dependences. The extensive aw data were processed by a two-step procedure fitting first the temperature dependence at each isopleth and subsequently the composition dependence at each isotherm. Good estimates could be thus obtained for derivative thermal properties (enthalpy, heat capacity). Alternatively, the water activity and excess enthalpy data were correlated simultaneously by a NRTL-type model, providing their compact, thermodynamically consistent and adequate representation. Despite small absolute values of excess Gibbs free energy (GE), the system is revealed to be highly nonideal, the small GE resulting from close compensation of its large enthalpy and entropy contributions. Large endothermic effects and an enhanced increase of entropy upon mixing found for this system indicate relative weakness of interactions between unlike molecules and a massive structure breakage in the solution. Positive values of excess volume and negative values of viscosity and refractive index deviations found in the major part of the composition range corroborate this general energetic and structural pattern, although the situation appears to be more complicated in the highly dilute IL region, where these properties congruently exhibit a sign inversion.  相似文献   

16.
In this work, we present new solubility results for carbon dioxide in the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate for temperatures ranging from (303.2 to 343.2) K and pressures up to 5.9 MPa using a thermogravimetric microbalance. Carbon dioxide solubilities were determined from absorption saturation (equilibrium) results at each fixed temperature and pressure. The buoyancy effect was accounted for in the evaluation of the carbon dioxide solubility. A highly accurate equation of state and a group contribution predictive method for carbon dioxide and for ionic liquids, respectively, were employed to determine the effect of buoyancy on carbon dioxide solubility. The solubility measurements are presented as a function of temperature and pressure. An extended Henry’s law equation was used to correlate the present experimental solubility values and the result was satisfactory.  相似文献   

17.
The technologically important properties of room temperature ionic liquids (RTILs) are fundamentally linked to the ion-ion interactions present among the constituent ions. These ion-ion interactions in one RTIL (1-ethyl-3-methylimidazolium trifluoromethanesulfonate, [C(2)mim]CF(3)SO(3)) are characterized with transmission FTIR spectroscopy and polarized attenuated total reflection (ATR) FTIR spectroscopy. A quasilattice model is determined to be the best framework for understanding the ionic interactions. A novel spectroscopic approach is proposed to characterize the degree of order that is present in the quasilattice by comparing the dipole moment derivative calculated from two independent spectroscopic measurements: (1) the TO-LO splitting of a vibrational mode using dipolar coupling theory and (2) the optical constants of the material derived from polarized ATR experiments. In principle, dipole moment derivatives calculated from dipolar coupling theory should be similar to those calculated from the optical constants if the quasilattice of the RTIL is highly structured. However, a significant disparity for the two calculations is noted for [C(2)mim]CF(3)SO(3), indicating that the quasilattice of [C(2)mim]CF(3)SO(3) is somewhat disorganized. The potential ability to spectroscopically characterize the structure of the quasilattice, which governs the long-range ion-ion interactions in a RTIL, is a major step forward in understanding the interrelationship between the molecular-level interactions among the constituent ions of an ionic liquid and the important physical properties of the RTIL.  相似文献   

18.
19.
The corrosion properties of carbon steel (CS), 304 stainless steel (304 SS), and pure titanium (Ti) are first studied in aluminum chloride–1-ethyl-3-methylimidazolium chloride ionic liquid (IL). An active-to-passive transition behavior was clearly observed for CS. The 304 SS exhibited the best stability among the materials; no considerable corrosion was recognized even in this high-chloride environment. In contrast, although Ti resists corrosion in ambient environments, it was not passivated in the IL and became severely corroded under an anodic applied potential. The material corrosion behaviors and mechanisms in the non-aqueous, low-oxygen, and high-halogen-containing IL are completely different from those in traditional aqueous solutions.  相似文献   

20.
The ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate has been tested as solvent for the separation of thiophene from aliphatic hydrocarbons. Liquid–liquid equilibrium data have been determined for ternary systems containing the ionic liquid, thiophene and C6, C7, C12 or C16 alkanes at T = 298.15 K. The performance of the ionic liquid as solvent in such systems has been evaluated. The experimental data were correlated using the NRTL and UNIQUAC equations, and the binary interaction parameters have been reported. The phase diagrams for the ternary mixtures including both the experimental and calculated tie-lines have been presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号