首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D. Dong 《Applied Surface Science》2009,255(15):7051-7055
Dispersible SiO2 nanoparticles were co-deposited with electroless Ni-P coating onto AISI-1045 steel substrates in the absence of any surfactants in plating bath. The resulting Ni-P/nano-SiO2 composite coatings were heat-treated for 1 h at 200 °C, 400 °C, and 600 °C, respectively. The hardness and wear resistance of the heat-treated composite coatings were measured. Moreover, the structural changes of the composite coatings before and after heat treatment were investigated by means of X-ray diffraction (XRD), while their elemental composition and morphology were analyzed using an energy dispersive spectrometer (EDS) and a scanning electron microscope (SEM). Results show that co-deposited SiO2 particles contributed to increase the hardness and wear resistance of electroless Ni-P coating, and the composite coating heat-treated at about 400 °C had the maximum hardness and wear resistance.  相似文献   

2.
Ni-Al2O3 composite coatings were prepared by using sediment co-deposition (SCD) technique and conventional electroplating (CEP) technique from Watt's type electrolyte without any additives. The microstructure, hardness, and wear resistance of resulting composites were investigated. The results show that the incorporation of nano-Al2O3 particles changes the surface morphology of nickel matrix. The preferential orientation is modified from (2 0 0) plane to (1 1 1) plane. The microhardness of Ni-Al2O3 composite coatings in the SCD technique are higher than that of the CEP technique and pure Ni coating and increase with the increasing of the nano-Al2O3 particles concentration in plating solution. The wear rate of the Ni-Al2O3 composite coating fabricated via SCD technique with 10 g/l nano-Al2O3 particles in plating bath is approximately one order of magnitude lower than that of pure Ni coating. Wear resistance for SCD obtained composite coatings is superior to that obtained by the CEP technique. The wear mechanism of pure Ni and nickel nano-Al2O3 composite coatings are adhesive wear and abrasive wear, respectively.  相似文献   

3.
Anodic coatings were prepared by microarc oxidation (MAO) on AZ91HP in a base solution of 10 g/L NaOH with and without the addition of 0-12 g/L phytic acid (C6H18O24P6). The influences of C6H18O24P6 and its concentration on the conductivity and breakdown voltage were studied. The morphologies and compositions of anodic coatings were determined by environmental scanning electron microscope (ESEM) and energy dispersive X-ray spectroscopy (EDX). Potentiodynamic polarization test was performed in 3.5 wt.% NaCl solution to evaluate the corrosion resistance of anodic coatings. The results showed that with the increase of C6H18O24P6 concentration, the solution conductivity decreased while the values of breakdown voltage increased. EDX analysis showed that the coatings formed in solutions with C6H18O24P6 addition contained Mg, Al, O, C, P and a trance of Na. The addition of C6H18O24P6 into the base solution was helpful in coating formation and the coatings formed in the solution containing 8 g/L C6H18O24P6 exhibited the best pore uniformity and corrosion resistance.  相似文献   

4.
Nano-sized Y2O3 particles were codeposited with nickel by electrolytic plating from a nickel sulfate bath. The effects of the incorporated Y2O3 on the structure, morphology and mechanical properties (including microhardness, friction coefficient and wear resistant) of Ni-Y2O3 composite coatings were studied. It is observed that the addition of nano-sized Y2O3 particles shows apparent influence on the reduction potential and pH of the electrolyte. The incorporated Y2O3 increases from 1.56 wt.% to 4.4 wt.% by increasing the Y2O3 concentration in the plating bath from 20 to 80 g/l. XRD results reveal that the incorporated Y2O3 particles favour the crystal faces (2 0 0) and (2 2 0). SEM and AFM images demonstrate that the addition of Y2O3 particles causes a smooth and compact surface. The present study also shows that the codeposited Y2O3 particles in deposits decrease the friction coefficient and simultaneously reduce the wear weight loss. Ni-Y2O3 composite coatings reach their best microhardness and tribological properties at Y2O3 content 4.4 wt.% under the experiment conditions.  相似文献   

5.
In order to investigate the role of amorphous SiO2 particles in corrosion and wear resistance of Ni-based metal matrix composite alloying layer, the amorphous nano-SiO2 particles reinforced Ni-based composite alloying layer has been prepared by double glow plasma alloying on AISI 316L stainless steel surface, where Ni/amorphous nano-SiO2 was firstly predeposited by brush plating. The composition and microstructure of the nano-SiO2 particles reinforced Ni-based composite alloying layer were analyzed by using SEM, TEM and XRD. The results indicated that the composite alloying layer consisted of γ-phase and amorphous nano-SiO2 particles, and under alloying temperature (1000 °C) condition, the nano-SiO2 particles were uniformly distributed in the alloying layer and still kept the amorphous structure. The corrosion resistance of composite alloying layer was investigated by an electrochemical method in 3.5%NaCl solution. Compared with single alloying layer, the amorphous nano-SiO2 particles slightly decreased the corrosion resistance of the Ni-Cr-Mo-Cu alloying layer. X-ray photoelectron spectroscopy (XPS) revealed that the passive films formed on the composite alloying consisted of Cr2O3, MoO3, SiO2 and metallic Ni and Mo. The dry wear test results showed that the composite alloying layer had excellent friction-reduced property, and the wear weight loss of composite alloying layer was less than 60% of that of Ni-Cr-Mo-Cu alloying layer.  相似文献   

6.
ZrO2 nanoparticles was uniformly co-deposited into a nickel matrix by electroplating of nickel from a Watts bath containing particles in suspension which were monodispersed with dispersant under DC electrodeposition condition. It was found that morphology, orientation and hardness of the nanocomposite coatings with monodispersed ZrO2 nanoparticles had lots of difference from the nanocomposite coatings with agglomerated ZrO2 nanoparticles and pure nickel coatings. Especially, the result of hardness showed that only a very low volume percent (less than 1 wt.%) of monodispered ZrO2 nanoparticles in Ni-ZrO2 nanocomposite coatings would result in higher hardness of the coatings. The hardness of Ni-ZrO2 nanocomposite coatings with monodispersed and agglomerated ZrO2 nanoparticles were 529 and 393 HV, respectively. The hardness value of the former composite coatings was over 1.3 times higher than that of the later. All these composite coatings were two-three times higher than that of pure nickel plating (207 HV) prepared under the same condition. The strengthening mechanisms of the Ni-ZrO2 nanocomposite coatings based on a combination of grain refinement strengthening from nickel matrix grain refining and dispersion strengthening from dispersion state of ZrO2 nanoparticles in the coatings.  相似文献   

7.
SiC reinforced copper composite coatings were prepared by electro-brush plating with micron-size silicon carbide (SiC) ranging from 1 to 5 μm on pure copper sheet in this paper. The micro-structural characterizations of SiC/Cu composite coatings were performed by optical microscope and Scanning Electron Microscope (SEM) coupled with spectrometer, to study co-deposition mechanism of SiC/Cu. It was found that there were three different patterns of SiC deposition in plating layers during electro-brush plating process, i.e. the particles could deposit inside copper grains, in grain boundaries, or in holes of the surface. To investigate deposition mechanism of each pattern, size of SiC and copper grains was compared. By comparison of size of copper grains and hard particles, SiC were either wrapped in copper grains or deposited in grain boundaries. Moreover, electro-brush plating layers at different brush velocities and current densities were obtained respectively, to analyze the microstructure evolution of the composite coatings. The hardness of plating layers was measured. The results indicated at the current density of 3 A/dm2, the SiC/Cu coating was compact with SiC content at a high level and the hardness reached a maximum.  相似文献   

8.
Results regarding micromechanical characteristics of gel grown pure- and sodium-modified copper tartrate crystals, bearing composition CuC4H4O6·3H2O, (Cu)0.77(Na)0.23C4H4O6·3H2O and (Cu)0.65(Na)0.35C4H4O6·H2O, as obtained on using indentation induced hardness testing technique are reported. Thermal behaviour of these crystals in the temperature ranging from room temperature (∼25 °C) to about 600 °C is also reported. Pure copper tartrate crystals are found to be thermally more stable than the sodium-modified ones. Dependence of Vickers’ hardness number Hv on load ranging from 0.049 to 2.94 N on two different planes for all the three compositions is analyzed. It is shown that after initial rise in the value of Hv, the same achieves saturation at a load of 0.49 N. Modification of copper tartrate crystal by introducing sodium in its lattice brings about a change in the micromechanical characteristics. The saturation value of Hv decreases with increase in the concentration of sodium ions. The results on (0 0 1) and (1 1 1) planes for both pure and modified copper tartrate crystals suggest hardness anisotropy. Relative difference of hardness between the two planes and yield strength for both pure and modified copper tartrate crystals is worked out. The experimental results are analyzed for applicability of Meyer’s law and Proportional Specimen Resistance Model. It is suggested that the experimental results indicating reverse ISE phenomenon may be explained in terms of the existence of a distorted zone near the crystal-medium interface. The integral method of Coats and Redfern approximation applied to the thermoanalytical data suggests “Random Nucleation Model” for the reaction kinetics of these crystals. Non-isothermal kinetic parameters such as activation energy, frequency factor and order of reaction are calculated.  相似文献   

9.
The mechanical properties and morphology of the composites of nylon 6, acrylonitrile-butadiene-styrene (ABS) rubber, and nano-SiO2 particles were examined as a function of the nano-SiO2 content. A mixture with separation and encapsulation microstructures existed in the nylon 6/ABS/nano-SiO2 at lower nano-SiO2 content, and ABS and nano-SiO2 improved the toughness synergistically, while obvious agglomeration appeared at higher nano-SiO2 content and the impact strength decreased. Moreover, the addition of nano-SiO2 particles also affected the dispersion of the rubber phase, resulting in the appearance of smaller rubber particles. The deformation and toughening mechanisms of the composites were also investigated; they resulted from rubber voiding, crack forking, and plastic deformation of the matrix.  相似文献   

10.
In this study, the effects of addition of sodium citrate dosages and different pH levels on the electrochemical behavior of CoFeNiCu alloy baths (electrolytes containing metal ions) were investigated. Stability (Pourbiax) diagrams and also speciation diagrams of cobalt, iron, nickel and copper, in conventional and citrate-added CoFeNiCu bath, were calculated by ChemEQL V.3.0 software. Stability diagrams showed that addition of 20 g?L?1 sodium citrate to the bath increased the pH of formed detrimental metal hydroxides (especially Fe(OH)3 from pH 3.4 to pH?~?6.9) through forming stable complexed species that were more stable than metal hydroxides at low pH levels (< ~3). According to the speciation diagrams, both pH level and sodium citrate dosage had noticeable effect on the distribution of species in the baths. Generally, at low pH level and/or sodium citrate dosage, Co++, Fe++, Ni++, and Cu++ species were dominant. The concentration of complexed species of Co(C6H5O7)? ( at pH?>?~ 7.5 or sodium citrate dosage?>?~ 30 g?L?1), Fe(C6H5O7)? (at pH?>?~ 5.5 or sodium citrate dosage?>?~ 25 g?L?1), Ni(C6H5O7)? (at pH?>?~ 6 or sodium citrate dosage?>?~ 30 g?L?1), and Cu(OHC6H5O7)2? ( at pH?>?~ 8 or sodium citrate dosage?>?~ 20 g?L?1) became significant. The effects of sodium citrate and reverse potential (E λ) on cyclic voltammetry curves were also studied. The addition of sodium citrate in the bath shifted the reduction potential of metals towards more negative potentials. Moreover, in order to deposit cobalt, iron, and nickel simultaneously with copper, it was necessary to increase E λ value gradually with sodium citrate dosage; otherwise, only copper would have deposited from citrate-added CoFeNiCu bath. The study of speciation diagrams showed that reduction of metals from CoFeNiCu bath with natural pH (no acid or base is added to adjust pH and it was?~?5.2) and containing 20 g?L?1 of sodium citrate mainly occurred directly from complexed species.  相似文献   

11.
Ceramic coatings were fabricated on AZ91D Mg-alloy substrate by microarc oxidation in Na2SiO3-NaOH-Na2EDTA electrolytes with and without C3H8O3 addition. The effects of different concentrations of C3H8O3 contained in the electrolyte on coatings thickness were investigated. The surface morphologies, RMS roughness, phase compositions and corrosion resistance property of the ceramic coatings were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and electrochemical corrosion test respectively. It is found that the addition of C3H8O3 into silicate electrolyte leads to increase of the unit-area adsorptive capacity of the negative ions at anode-electrolyte interface and thus improves the compactness and corrosion resistance of the MAO coating. The coating thickness decreases gradually with the increase of concentrations of C3H8O3 in the electrolyte. The oxide coating formed in base electrolyte containing 4 mL/L C3H8O3 exhibits the best surface appearance, the lowest surface RMS roughness (174 nm) and highest corrosion resistance. In addition, both ceramic coatings treated in base electrolyte with and without C3H8O3 are mainly composed of periclase MgO and forsterite Mg2SiO4 phase, but no diffraction peak of Mg phase is found in the patterns.  相似文献   

12.
Particle-size measurements have been performed above a flat-flame burner using C2H6/O2 and C2H4/O2 mixtures and the assumption that a self-preserving distribution (s.p.d.) obtains for spherical particles. The absence of significant deviations from sphericity for the particles has been verified. Dissymmetry ratios were measured for parallel polarized light from an argon-ion laser at 4880 Å. The measured results are compared with previously obtained data for CH4/O2 mixtures and show differences in the rates and amounts of particulate growths, with the growth curves for all three gases leveling off at about 40–50 mm above the burner rim. The rates of particulate growths downstream of the flame are ordered as follows in the gas mixtures: C2H4/O2>C2H6/O2>CH4/O2.  相似文献   

13.
Ti-B-C-N nanocomposite coatings with different C contents were deposited on Si (1 0 0) and high speed steel (W18Cr4V) substrates by closed-field unbalanced reactive magnetron sputtering in the mixture of argon, nitrogen and acetylene gases. These films were subsequently characterized ex situ in terms of their microstructures by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM), their nanohardness/elastic modulus and facture toughness by nano-indention and Vickers indentation methods, and their surface morphology using atomic force microscopy (AFM). The results indicated that, in the studied composition range, the deposited Ti-B-C-N coatings exhibit nanocomposite based on TiN nanocrystallites. When the C2H2 flow rate is small, incorporation of small amount of C promoted crystallization of Ti-B-C-N nanocomposite coatings, which resulted in increase of nano-grain size and mechanical properties of coatings. A maximum grain size of about 8 nm was found at a C2H2 flux rate of 1 sccm. However, the hardness, elastic modulus and fracture toughness values were not consistent with the grain size. They got to their maximum of 35.7 GPa, 363.1 GPa and 2.46 MPa m1/2, respectively, at a C2H2 flow rate of 2 sccm (corresponding to about 6 nm in nano-grain size). Further increase of C content dramatically decreased not only grain size but also the mechanical properties of coatings. The presently deposited Ti-B-C-N coatings had a smooth surface. The roughness value was consistent with that of grain size.  相似文献   

14.
Ni-Co/MoS2 composite coatings were prepared by electrodeposition in a Ni-Co plating bath containing nano-sized MoS2 particles to be co-deposited. The polarization behavior of the composite plating bath was examined on a PAR-273A potentiostat/galvanostat device. The friction and wear behaviors of the Ni-Co/MoS2 composite coatings were evaluated with UMT-2MT test rig in a ball-on-disk contact mode. The morphologies of the original and worn surfaces of the composite coatings were observed on scanning electron microscope (SEM). It was found that the introduction of MoS2 nano-particulates in the electrolyte caused the shift towards larger negatives of the reduction potential of the Ni-Co alloy coating, and the co-deposited MoS2 showed no significant effect on the electrodeposition process of the Ni-Co alloy coating. However, the co-deposited MoS2 led to changes in the surface morphology and structure of the composite coating as well. Namely, the peak width of the Ni-Co solid solution for the composite coating is broader as compared to that of the Ni-Co alloy coating. The co-deposited MoS2 particulates were uniformly distributed in the Ni-Co matrix and contributed to increase tribological properties of the Ni-Co alloy coating.  相似文献   

15.
K Singh  GK Sandhu  BS Lark  SP Sud 《Pramana》2002,58(3):521-528
Molar extinction coefficients of some carbohydrates viz. l-arabinose (C5H10O5), d-glucose (C6H12O6), d-mannose (C6H12O6), d-galactose (C6H12O6), d(-) fructose (C6H12O6) and maltose (C12H24O12) in aqueous solutions have been determined at 81, 356, 511, 662, 1173 and 1332 keV by gamma ray transmission method in a narrow beam good geometry set-up. These coefficients have been found to depend upon the photon energy following a 4-parameter polynomial. These extinction coefficients for different sugars having the same molecular formula have same values varying within experimental uncertainty. Within concentration ranges studied, Beer-Lambert law is obeyed very well.  相似文献   

16.
The aim of this work is to obtain the electroplating parameters for preparation of Ni-W/Al2O3 composite coating with high tungsten content, high micro-hardness and excellent wear resistance by pulse plating procedure. Our results showed that the duty cycle is a dominant parameter for the tungsten content in the coating and the tungsten content increases significantly with increasing duty cycle. The further analysis showed the great influence of tungsten content on micro-hardness of the coating. A maximum micro-hardness of about 859 Hv was obtained in pulse electrodeposited Ni-W/Al2O3 composite with tungsten content of 40 wt.% at a peak current density of 20 A/dm2, a duty cycle of 80%, a pulse frequency of 1000 Hz and a particle loading of 10 g/L alumina in the plating bath. Although the hardness of Ni-W/Al2O3 composite coating was only slightly affected by the alumina content of the deposits prepared in present investigation, the alumina content effect on the tribological characteristic of Ni-W/Al2O3 composite coatings is significant. The friction coefficient was lowered to 0.25 and the wear loss was reduced to 1.05 mg by setting the control factors according to the values mentioned above for obtaining the coating with the highest micro-hardness.  相似文献   

17.
Experiments on pyrolysis and oxidation of rich mixtures of various aliphatic and simple aromatic hydrocarbons in reflected shock waves have been performed. The mixtures C2H2/Ar, C2H6/Ar, C2H4/Ar, C2H4/O2/Ar, CH4/Ar, CH4/O2/Ar, C3H8/Ar, C3H6/Ar, toluene/Ar, and benzene/Ar were studied. The yield of soot and the temperature of soot particles were determined experimentally by the double-beam absorption emission method. The kinetic model of soot formation during the pyrolysis and oxidation of rich mixtures of aliphatic and aromatic hydrocarbons complemented with a set of nucleations of soot particles from both polyaromatic fragments and unsaturated aliphatic hydrocarbons was suggested. This kinetic model of soot formation was successfully tested. It describes the experimental literature data on the yield of the products of pyrolysis and oxidation of acetylene and diacetylene in a shock tube. The results of our experiments and kinetic calculations of the time, temperature, and concentration dependences are in good agreement for all hydrocarbons under study. All the kinetic parameters of the model remained strictly constant.  相似文献   

18.
The coatings with different phosphorus contents were obtained by varying the concentration of H3PO3 in the electroplating bath. With the increase of phosphorus content, the structure of the Ni-P electrodeposited coatings transformed from microcrystalline to a mixture of nanocrystalline and amorphous phases, then to amorphous phase. A high hardness value of 710 HV0.1 of as-deposited Ni-P coating was obtained at 8.3 at.% phosphorus content, and high wear resistance was accordingly achieved. The refined nanocrystalline grains with average size of about 7 nm were found to be responsible for the high hardness and improved wear resistance of the as-deposited Ni-P electrodeposited coating.  相似文献   

19.
罗庆洪  陆永浩  娄艳芝 《物理学报》2011,60(8):86802-086802
利用反应磁控溅射方法在单晶硅和高速钢(W18Cr4V)基片上制备出不同C含量Ti-B-C-N纳米复合薄膜. 使用X射线衍射和高分辨透射电子显微镜研究了Ti-B-C-N纳米复合薄膜的组织和微观结构,用纳米压痕仪测试了它们的硬度和弹性模量. 结果表明,利用往真空室通入C2H2气体的方法制备得到的Ti-B-C-N纳米复合薄膜中,在所研究成分范围内只发现TiN基的纳米晶. 当C2H2流量较小时,C元素的加入可以促进Ti-B-C 关键词: Ti-B-C-N薄膜 磁控溅射 微观结构 力学性能  相似文献   

20.
Process of direct copper plating on ABS plastics   总被引:1,自引:0,他引:1  
The processes of direct copper plating on ABS plastics were investigated by atomic force microscopy (AFM), ultraviolet-visible absorption spectrometry (UV-vis) and X-ray fluorescence spectroscopy (XRF) techniques. The substrates were etched by CrO3/H2SO4 solution containing Pd2+ ions, catalyzed by Pd/Sn colloids solution and accelerated in an alkaline solution containing copper ions. The Pd2+ ions in etching solution can reduce the surface roughness and enhance the colloids adsorption. The good dispersivity colloids have excellent catalysis and its UV-vis peaks broaden. After acceleration, when the stability of Cu2+-complex is relatively low, Sn2+ was oxidized by Cu2+ in the alkaline solution meanwhile Cu2O can be formed. The disproportionation reaction of Cu2O will proceed and metallic copper forms between the Pd particles, so the conductivity of ABS surface increased. The copper particles play an important role in determining the uniformity of the propagation of copper plating. The particles of copper plating layer were uniformity and fine. The atomic concentration and the thickness of copper layer were analyzed by XRF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号