首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Al-doped ZnS films were deposited using close-spaced evaporation of the powders synthesized by chemical precipitation method. The films were prepared for different Al concentrations in the range 0–10 at.% on glass substrates kept at 300 °C. The effect of Al-doping on ZnS composition, microstructure and optoelectronic properties of as-grown ZnS layers was determined using appropriate techniques. The films were polycrystalline and showed (111) preferred orientation for all the doping concentrations in spite of an additional phase of Al2S3 observed at higher dopant levels. The surface morphological studies indicated that the Al incorporation had a considerable effect on the surface roughness of the films. The optical measurements indicated that the optical energy band gap decreased slightly with the increase of dopant concentration without affecting the optical transmittance characteristics significantly. The electrical analysis indicated that the resistivity of the layers changed significantly with the doping concentration in the layers. The change of photoluminescence behaviour of the as-grown ZnS:Al films with dopant concentration was also studied.  相似文献   

2.
Al-doped ZnO powder was synthesized via the Pechini route with a doping rate varying from 1 to 4 mol.%. A solubility limit has been estimated under 0.3 mol.% of Al using X-ray diffraction refinements. The incorporation of aluminium into the ZnO lattice was investigated by 27Al NMR, which suggests an extremely low amount of Al in a distribution of sites in ZnO. In order to assess the impact of such a low dopant amount, diffuse reflection experiments were performed for a wavelength range from 200 to 2500 nm. If the effect of doping was negligible for samples prepared at 850 °C, annealing at 1200 °C clearly reveals enhanced IR absorption properties for the doped samples, which are similar whatever be the nominal Al content.  相似文献   

3.
Mg–Al layered double hydroxides (Mg–Al LDHs) intercalated with 1,3,6-naphthalenetrisulfonate (NTS3?) and 3-amino-2,7-naphthalenedisulfonate (ANDS2?) ions were prepared by coprecipitation and were characterized by X-ray diffraction and chemical analyses. Based on X-ray diffraction patterns, the naphthalene rings of NTS3? and ANDS2? were most likely oriented parallel to the brucite-like host layers of the Mg–Al LDH, midway between layers. The prepared Mg–Al LDHs were able to selectively take up aromatics from aqueous solutions, and the order of percentage uptake was as follows: 1,3-dinitrobenzene > nitrobenzene > benzaldehyde > N,N-dimethylaniline > anisole > 1,2-dimethoxybenzene. The differences in the extent of π–π stacking interactions occurring between the benzene rings of the aromatics and the naphthalene ring of the intercalated NTS3? and ANDS2? probably resulted in these differences among the absorbed quantities of the various aromatics.  相似文献   

4.
In this study, nonvolatile nano-floating gate memory devices were fabricated based on ZnO films and Al nanoparticles and their electrical properties were investigated. Al nanoparticles were embedded in between SiO2 tunneling and control oxide layers deposited on ZnO channels, and these nanoparticles acted as floating gate nodes in the devices. Their electron mobility, on/off ratio, and threshold voltage shift were estimated to be 9.42 cm2/V s, about 106, and 4.2 V, respectively. Their programming/erasing, endurance and retention were also characterized. Especially, the low-temperature processes applied in this work indicate that integrated electronic devices can be fabricated on temperature-sensitive substrates.  相似文献   

5.
Nanometer depth resolution is investigated using an innovative pulsed-radiofrequency glow discharge time-of-flight mass spectrometer (pulsed-rf-GD-TOFMS). A series of ultra-thin (in nanometers approximately) Al/Nb bilayers, deposited on Si wafers by dc-magnetron sputtering, is analyzed. An Al layer is first deposited on the Si substrate with controlled and different values of the layer thickness, t Al. Samples with t Al = 50, 20, 5, 2, and 1 nm have been prepared. Then, a Nb layer is deposited on top of the Al one, with a thickness t Nb = 50 nm that is kept constant along the whole series. Qualitative depth profiles of those layered sandwich-type samples are determined using our pulsed-rf-GD-TOFMS set-up, which demonstrated to be able to detect and measure ultra-thin layers (even of 1 nm). Moreover, Gaussian fitting of the internal Al layer depth profile is used here to obtain a calibration curve, allowing thickness estimation of such nanometer layers. In addition, the useful yield (estimation of the number of detected ions per sputtered atom) of the employed pulsed-rf-GD-TOFMS system is evaluated for Al at the selected operating conditions, which are optimized for the in-depth profile analysis with high depth resolution.  相似文献   

6.
《印度化学会志》2023,100(1):100822
Ni–7Cr and Ni–7Cr–2Al (wt.%) nanocomposite coatings were fabricated by co-electrodeposition of Ni with Cr (40 nm) or and Al (75 nm) nanoparticles from a nickel sulfate bath, their microstructure, friction and wear performance were comparably evaluated in order to elucidate the effect of Al nanoparticles on the properties of nanocomposite coatings. The results indicated that the co-deposition of minor Al nanoparticles significantly increases the microhardness and wear resistance because Al nanoparticles with surface amorphous oxides layers exert the dispersion-strengthening effect like Al2O3 nanoparticles.  相似文献   

7.
Silver containing silica (Ag–SiO2) thin films with and without aluminum (Al) were prepared on soda-lime-silica glass by spin coating of aqueous sols. The coating sol was formed through mixing tetraethyl orthosilicate [Si(OC2H5)4]/ethanol solution with aqueous silver nitrate (AgNO3) and aluminum nitrate nonahydrate [(AlNO3)3·9H2O] solutions. The deposited films were calcined in air at 100, 300 and 500 °C for 2 h and characterized using x-ray diffraction, UV-visible and x-ray photoelectron spectroscopy. The effect of Al incorporation and calcination treatment on microstructure and durability of the films, and chemical/physical state of silver in the silica thin film have been reported. The bactericidal activity of the films was also determined against Staphylococcus aureus via disk diffusion assay studies before and after chemical durability tests. The investigations revealed that the optical, bactericidal properties and chemical durability of Ag–SiO2 films can be improved by Al addition. The Al-modified Ag–SiO2 thin films do not exhibit any coloring after calcination in the range of 100–500 °C, illustrating that silver is incorporated within the silica gel network in ionic form (Ag+). Al incorporation also improved the overall durability and antibacterial endurance of Ag–SiO2 thin films.  相似文献   

8.
Large volume Ge-detectors have been used for the analysis of positron emitters of cosmogenic origin in extraterrestrial samples including lunar samples and meteorites. We present results from the analysis of 26Al in the Rumanová chondrite which was found in 1994 in Slovakia. A slide of the meteorite was cut into ~1 cm3 cubes which were analyzed in a coincidence Ge–NaI(Tl) spectrometer placed in a large shield measuring 1.5 × 1.5 × 2 m3, and consisting of iron, lead and copper layers. Operational characteristics of the spectrometer are presented and discussed, as well as the 26Al profile observed in the meteorite.  相似文献   

9.
A micro-LIBS system was set up based on a quadruple Nd:YAG laser at 266 nm coupled with a microscope. Elemental mapping was performed on a Mo-rich glass–ceramic sample containing CaMoO4 crystallites hundreds of microns in length and about 25 μm in section diameter. The topography of single-shot laser-induced craters was characterized using an atomic force microscope (AFM), which revealed a crater size less than 7 μm. Mappings of Mo, Ca, Sr, Al, Fe, Zr and rare earth elements such as Eu, Nd, Pr and La were undertaken. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was conducted to validate the micro-LIBS analysis. Principal components analysis calculation was used to investigate the correlation of elements in the two phases of glass–ceramic. Correlation between Ca, Sr, rare earth elements and Mo indicates their preferential incorporation into the calcium molybdate crystalline phase. Anti-correlation between Fe, Zr, Al and Mo revealed their affinity to the glass phase.  相似文献   

10.
The present work reports the enhancement of the photoelectrochemical water splitting performance of in-situ silicon (Si)-doped nanotubular/nanoporous (NT/NP) layers. These layers were grown by self-organizing anodization on Fe-Si alloys of various Si content. The incorporation of Si is found to retard the layer growth rates, leads to a more pronounced nanotubular morphology, and most importantly, an improved photoelectrochemical behavior. By increasing Si content from 1, 2 to 5 at.% in the iron oxide NT/NP photoanodes, the photocurrent onset potential shifts favorably to lower values. At 1.3 V vs. RHE, hematite layer with 5 at.% Si shows a 5-fold increase of the photocurrent, i.e. 0.5 mA cm 2 in comparison to 0.1 mA cm 2 for the undoped samples. The study also reveals that a suitable layer thickness is essential to achieve a beneficial effect of the Si doping.  相似文献   

11.
《Solid State Sciences》2007,9(3-4):287-294
A composite of dodecylsulfate intercalated Mg–Al and Co–Al LDHs in which the layers of the two LDHs are randomly costacked was prepared starting from the monolayer colloidal dispersions of the individual surfactant intercalated LDHs obtained through delamination in 1-butanol. The surfactant ion of the composite could be exchanged for acetate ions. The thermal decomposition and reconstruction behavior of the acetate-intercalated composite was found to be different from those of an LDH in which each layer contains Mg, Co and Al and a physical mixture of Mg–Al and Co–Al LDHs. While the composite shows partial reconstruction to LDH phase even after heating up to 1000 °C the other samples do not show reconstruction beyond 800 °C.  相似文献   

12.
A non-quarterwavelength optical design (design wavelength, λo = 1,054 nm) based antireflection (AR) coating was prepared by sol–gel spin coating technique. Two materials, zirconia and silica were chosen for the deposition of AR layers on borosilicate crown glass, refractive index (R. I. = 1.51). For this design, the bottom and middle layers were of zirconia with the R. I. range 1.941–1.958 while the top layer was of silica with R. I. 1.455. To understand the surface feature after each deposition, refractive index and physical thickness of the layers were measured ellipsometrically (λ = 632.8 nm) at different points over the area, 10 mm × 10 mm with an interval of 0.5 mm along the centre based perpendicular projection made on an imaginary chord. The surface feature was examined by plotting the measured values of the optical parameters against the displacement. The surface roughness decreased with increasing layers. This was verified by the study of AFM images of the layers. Specular reflection of the antireflection coated product at λ0 was comparable to that of the theoretically simulated curve.  相似文献   

13.
In this letter we show that nanocrystalline aluminium can be electrodeposited in the Lewis acidic ionic liquid based on AlCl3 (60 mol%) and 1-(2-methoxyethyl)-3-methylimidazolium chloride ([MoeMIm]Cl) (40 mol%). The study comprised cyclic voltammetry, potentiostatic polarization, and SEM and XRD measurements. The methoxy group in the side chain of the imidazolium cation significantly influences the electrodeposition pathway of Al in comparison to [EMIm]Cl/AlCl3. Cyclic voltammetry shows a significant current loop attributed to nucleation. Shiny Al layers are obtained with an average crystallite size of about 40 nm.  相似文献   

14.
Microstructural characterization was carried out during the pre‐oxidation of Ni–20Cr–8Al alloy foam using transmission electron microscopy (TEM). During the pre‐oxidation at 1000 °C for 1, 30, and 60 min in air, the sequential formations of NiO, NiCr2O4, Cr2O3, and α‐Al2O3 1‐μm‐thick oxide layers were, respectively, characterized. Initially, during pre‐oxidization, the layers formed abnormally in an island growth mode, but they grew to be morphologically uniform after 30 min. Pores were found after only 1 min in the middle region of the oxide layers, near the Cr2O3 layer, and then these developed into critical micro‐cracks after 60 min. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
Layered double hydroxides (LDHs) with Mg and Al in the layers and carbonate, nitrate or chloride in the interlayer, or with Zn and Al in the layers and chloride in the interlayer, have been prepared by coprecipitation, and have been used as precursors to prepare chromate-containing LDHs. All these systems, as well as those obtained upon their calcination up to 800 °C, have been characterised by powder X-ray diffraction, FT-IR and vis-UV spectroscopies, temperature-programmed reduction (TPR), nitrogen adsorption at −196 °C for surface texture and porosity assessment, and FT-IR monitoring of pyridine adsorption for surface acidity determination. The results obtained show that the crystallinity of the chromate-containing LDH depends on the precursor used. The layered structure of the Mg, Al systems is stabilised up to 400 °C upon incorporation of chromate; however, the Zn,Al-chromate samples collapse between 200 and 300 °C, with simultaneous formation of ZnO. Calcination of the samples above 400 °C gives rise to a reduction of Cr(VI) to Cr(III), as concluded from vis-UV spectroscopic studies. The TPR profiles show that chromate in ZnAl hydrotalcite is more easily reduced than that incorporated in the magnesium ones. Moderately strong surface Lewis acid sites exist in all samples calcined below 500 °C.  相似文献   

16.
Al‐enriched surface layers containing a Mg17Al12 intermetallic phase and a solid solution of Al in Mg were fabricated by heating Mg specimens in contact with Al powder in a vacuum furnace. The layer formation process proceeded through partial melting at the Mg‐substrate/Al‐powder interface. The test results suggest that a good contact between the Al powder and the Mg substrate is required during heat treatment. In this study, a pressure of 1 MPa was applied to improve the contact of the Al powder with the Mg specimen. When the powder was pressed down during heating, it was possible to reduce the process temperature from 450 °C to 440 °C. The layers produced at 440 °C in a short heating time (40 min) were thick, continuous and uniform. The microhardness of the Al‐enriched layers was much higher than that of the Mg substrate. The results of the electrochemical corrosion tests indicated that the Mg specimens with an Al‐enriched surface layer had better corrosion resistance than the bare Mg. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
In this study vitamin B12 covered magnetite nanoparticles have been incorporated into a conducting polypyrrole. This polymer was electrochemically synthesized in the presence of the B12-coated magnetite. The adsorption of B12 was demonstrated by the decrease in absorbance of the vitamin in the supernatant liquid after B12 has been in contact with magnetite sol overnight. The composition of the layers was studied by the electrochemical quartz crystal microbalance technique during the polymerization. The slope of the mass change–charge curves indicate the incorporation of 27 m/m% magnetite and 15 m/m% B12. The redox transformation of the film in monomer- and nanoparticle-free solutions was also investigated by this method and the difference in the virtual molar masses of the moving species was evidenced. The morphology and the composition of the layers were characterized by scanning electron microscopy combined with energy dispersive X-ray microanalysis measurements, which latter proved the successful incorporation of the magnetic and bio-active components. The electrochemical behavior of the films unambiguously showed the complex redox activity of the composites and the current surplus were quantified by the redox capacity of the layers. These data show the doubling of the redox capacity in case of the hybrid material compared to the neat polymer. The successful enrichment of B12 can be exploited in the recently evidenced redox mediation process performed by a PPy/B12 film.  相似文献   

18.
《Comptes Rendus Chimie》2015,18(6):685-692
Raney Ni–Al alloy was found to be capable of reducing benzophenones to the corresponding diphenylmethanes (2) in water in good to excellent yields within 3 h at 60 °C in a sealed tube. The complete reduction process of both aromatic rings required 18 h at 80 °C with Raney Ni–Al and Al powder in the presence of Pt/C. The nature of the hydrogenated products was also found to greatly depend on temperature, reaction time, volume of water, and amount of Raney Ni–Al alloy being used.  相似文献   

19.
The surface diffusion and the incorporation of an adatom on early stage of Co/Al (001) interface formation was investigated using the density functional theory (DFT). The energy barrier for the surface diffusion (migration of Co adatom to an adjacent hollow site passing the bridge site) was calculated as 1.01 eV. Large displacement of neighboring Al atoms was accompanied by the surface diffusion of Co adatom. For incorporation process, the energy barrier was 0.39 eV, only 38.6% of the barrier for surface diffusion and the energy gain of the system was 0.43 eV. After the incorporation process was completed, the Co adatom and Al atoms formed seven Co-Al bonds of highly coordinated B2-like configuration.  相似文献   

20.
Due to its importance in Si-based devices, carbon incorporation in a silicon matrix has become an object of intensive research. However, the size difference between carbon and silicon makes this incorporation difficult, and only small amounts of carbon (a few percent) can be introduced without giving rise to SiC precipitation. Experimental and theoretical studies combined together have led to important progress in the general understanding of surface–subsurface carbon incorporation in the clean and hydrogenated Si(0 0 1) reconstructed surfaces. These results emphasize the role of the surface reconstruction and the carbon–carbon interactions. However, the Si(0 0 1) surface often presents defects such as dimer vacancies or ad-dimers. By modifying the local stress, these defects can play an important role in carbon incorporation. We review the results of recent studies and discuss the role of different relevant parameters such as local stress, carbon–defect interactions, carbon concentration, position and orientation of the defects, defect–defect distance, defect concentration… Finally, we show how, acting on the surface defects, one might improve carbon penetration in Si(0 0 1) and allow a better control of the carbon position in the subsurface layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号