共查询到20条相似文献,搜索用时 0 毫秒
1.
The PA66-based nanocomposites containing surface-modified nano-SiO2 were prepared by melt compounding. The interface structure formed in composite system was investigated by thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The influence of interface structure on material's mechanical and thermal properties was also studied. The results indicated that the PA66 chains were attached to the surface of modified-silica nanoparticles by chemical bonding and physical absorption mode, accompanying the formation of the composites network structure. With the addition of modified silica, the strength and stiffness of composites were all reinforced: the observed increase depended on the formation of the interface structure based on hydrogen bonding and covalent bonding. Furthermore, the differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) showed that the presence of modified silica could affect the crystallization behavior of the PA66 matrix and lead to glass transition temperature of composites a shift to higher temperature. 相似文献
2.
Using the first-principles density-functional theory within the generalized gradient approximation (GGA), we have investigated the structural, elastic, mechanical, electronic, and optical properties and phase transition of CuInO2. Structural parameters including lattice constants and internal parameter, pressure effects and phase transition pressure were calculated. We have obtained the elastic coefficients, bulk modulus, shear modulus, Young's modulus and Poisson's ratio. We find that two phases of CuInO2 are indirect band gap semiconductors (F–Γ and H–Γ for 3R and 2H, respectively). Optical properties, including the dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function and optical conductivity have been obtained for radiations of up to 30 eV. 相似文献
3.
Microstructure and mechanical properties of Al2O3-Al composite coatings deposited by plasma spraying
Al2O3 and Al2O3-Al composite coatings were prepared by plasma spraying. Phase composition of powders and as-sprayed coatings was determined by X-ray diffraction (XRD), while optical microscopy (OM) and scanning electron microscopy (SEM) were employed to investigate the morphology of impacted droplets, polished and fractured surface, and the element distribution in terms of wavelength-dispersive spectrometer (WDS). Mechanical properties including microhardness, adhesion and bending strength, fracture toughness and sliding wear rate were evaluated. The results indicated that the addition of Al into Al2O3 was beneficial to decrease the splashing of impinging droplets and to increase the deposition efficiency. The Al2O3-Al composite coating exhibited homogeneously dispersed pores and the co-sprayed Al particles were considered to be distributed in the splat boundary. Compared with Al2O3 coating, the composite coating showed slightly lower hardness, whereas the coexistence of metal Al phase and Al2O3 ceramic phase effectively improved the toughness, strength and wear resistance of coatings. 相似文献
4.
Yusuke Arai 《Journal of luminescence》2011,131(12):2652-2660
Alkaline hexafluorostantanate red phosphors Na2SnF6:Mn4+ and Cs2SnF6:Mn4+ are synthesized by chemical reaction in HF/NaMnO4 (CsMnO4)/H2O2/H2O mixed solutions immersed with tin metal. X-ray diffraction patterns suggest that the synthesized phosphors have a tetragonal symmetry with the space group D4h14 (Na2SnF6:Mn4+) and a trigonal symmetry with the space group D3d3 (Cs2SnF6:Mn4+). Photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and the Raman scattering techniques are used to investigate the optical properties of the phosphors. The Franck-Condon analysis of the PLE data yields the Mn4+-related optical transitions to occur at ∼2.39 and ∼2.38 eV (4A2g→4T2g) and at ∼2.83 and ∼2.76 eV (4A2g→4T1g) for Na2SnF6:Mn4+ and Cs2SnF6:Mn4+, respectively. The crystal field parameters (Dq) of the Mn4+ ions in the Na2SnF6 and Cs2SnF6 hosts are determined to be ∼1930 and ∼1920 cm−1, respectively. Temperature-dependent PL measurements are performed from 20 to 440 K in steps of 10 K, and the obtained results are interpreted by taking into account the Bose-Einstein occupation factor. Comprehensive discussion is given on the phosphorescent properties of a family of Mn4+-activated alkaline hexafluoride salts. 相似文献
5.
采用坩埚下降法生长了Yb: CaF2-SrF2晶体,测试了该晶体的吸收和荧光光谱 以及在不同温度下晶体的热扩散系数和热膨胀系数,并且计算了晶体的热膨胀系数以及在常温下的热导率. 采用对比的方法,对晶体的吸收光谱,荧光光谱,热学性能进行了分析.从吸收和荧光光谱结果表明: 在掺杂相对较高浓度的SrF2的混晶中, Yb3+吸收截面和发射截面比较大. Yb: CaF2-SrF2 (19%)晶体在1040 nm附近的发射截面比较大,光谱也比较宽. 这说明在掺杂相同浓度Yb时,混晶中CaF2, SrF2的比例不同,晶体的光谱性质不同, 主要原因是在混晶中晶体的无序度不同,晶体对称性降低,形成低对称光学中心. 从热扩散系数计算的热导率结果看出晶体具有比较好的热导率. 相似文献
6.
Structural, elastic and mechanical properties of orthorhombic SrHfO3 under pressure have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density functional theory. The calculated equilibrium lattice parameters and elastic constants of orthorhombic SrHfO3 at zero pressure are in good agreement with the available experimental and calculational values. The lattice parameters, total enthalpy, elastic constants and mechanical stability of orthorhombic SrHfO3 as a function of pressure were studied. With the increasing pressure, the lattice parameters and volume of orthorhombic SrHfO3 decrease whereas the total enthalpy increases. Orthorhombic SrHfO3 is mechanically stable with low pressure (<52.9 GPa) whereas that is mechanically instable with high pressure (>52.9 GPa). The bulk modulus, shear modulus, Young's modulus and mechanical anisotropy of orthorhombic SrHfO3 as a function of pressure were analyzed. It is found that orthorhombic SrHfO3 under pressure has larger bulk modulus, better ductility and less mechanical anisotropy than orthorhombic SrHfO3 at 0 GPa. 相似文献
7.
CdS doped TiO2 thin films (with CdS content=0, 3, 6, 9 and 12 at%) were grown on glass substrates. The X-ray diffraction analysis revealed that the films are polycrystalline of monoclinic TiO2 structure. The microstructure parameters of the films such as crystallite size (Dν) and microstrain (e) are calculated. Both the crystallites size and the microstrain are decreased with increasing CdS content. The optical constants have been determined in terms of Murmann's exact equations. The refractive index and extinction coefficient are increased with increasing CdS content. The optical band gap is calculated in the strong absorption region. The possible optical transition in these films is found to be an allowed direct transition. The values of Egopt are found to decrease as the CdS content increased. The films with 3 at% CdS content have better decomposition efficiency than undoped TiO2. The films with 6 at% and 9 at% CdS content have decomposition efficiency comparable to that of undoped TiO2, although they have lower band gap. The CdS doped TiO2 could have a better impact on the decomposing of organic wastes. 相似文献
8.
9.
Qi-Jun Liu Zheng-Tang LiuJi-Chao Chen Li-Ping FengHao Tian 《Physica B: Condensed Matter》2011,406(18):3377-3382
We calculated the structural parameters, elastic, mechanical, electronic and optical properties of 3R- and 2H-CuGaO2 using the first-principles density-functional theory. The results show that the structural parameters of two phases are in good agreement with previous theoretical and experimental data. Two phases are mechanically stable, behave in ductile manner and have indirect band gap. The analyses of electronic structures and charge densities of two phases show mainly covalent nature in Cu-O bonds and coexistence of both ionic and covalent nature in Ga-O bonds. The optical properties are obtained and discussed, including the complex dielectric function, refractive index, extinction coefficient, optical reflectivity, absorption coefficient, energy-loss spectrum and complex conductivity function, which provide useful information for the future applications of CuGaO2. 相似文献
10.
Yong-Kai WeiJing-Xin Yu Zhi-Guo LiYan Cheng Guang-Fu Ji 《Physica B: Condensed Matter》2011,406(23):4476-4482
The elastic and thermodynamic properties of CsCl-type structure CaB6 under high pressure are investigated by first-principles calculations based on plane-wave pseudopotential density functional theory method within the generalized gradient approximation (GGA). The calculated lattice parameters of CaB6 under zero pressure and zero temperature are in good agreement with the existing experimental data and other theoretical data. The pressure dependences of the elastic constants, bulk modulus B (GPa), and its pressure derivative B′, shear modulus G, Young's modulus E, elastic Debye temperature ΘB, Zener's anisotropy parameter A, Poisson ratios σ, and Kleinmann parameter ζ are also presented. An analysis for the calculated elastic constants has been made to reveal the mechanical stability of CaB6 up to 100 GPa. The thermodynamic properties of the CsCl-type structure CaB6 are predicted using the quasi-harmonic Debye model. The pressure-volume-temperature (P-V-T) relationship, the variations of the heat capacity CV, Debye temperature ΘD, and the thermal expansion α with pressure P and temperature T, as well as the Grüneisen parameters γ are obtained systematically in the ranges of 0-100 GPa and 0-2000 K. 相似文献
11.
采用了熔盐法新工艺制备了纯相与掺钒的MnNb2O6粉晶,利用X射线衍射仪(XRD),扫描电子显微镜(SEM),能谱分析(EDX),透射电子显微镜(TEM)、高分辨透射电镜(HRTEM)和电子衍射(SAED)分析了其物相、形貌及微结构.结果表明合成产物为正交晶系钶铁矿型MnNb2O6;在不同的熔盐中合成出了棒状、片状与长方体形貌的纯相产物.讨论了温度与掺杂对结构与形貌的影响,HRTEM与SAED分析表明了产物的各向异性生
关键词:
熔盐法
结构与形貌
掺杂
反铁磁性 相似文献
12.
利用熔融快淬结合放电等离子烧结(SPS), 制备了CuxAg1-xSbTe2(x= 0---0.3)样品. 粉末X射线衍射(XRD)分析结果显示, SPS处理以前, 含Cu样品形成NaCl型结构的固溶体, 而未加入Cu的样品析出Ag2Te第二相. 根据热分析和XRD测量结果, Cu的加入能够有效抑制Ag2Te的析出, 但同时会在快淬样品中产生少量非晶相. 在温度升高到540 K左右时, 非晶相发生晶化, 形成Sb7Te亚稳相, 并最终转变成Sb2Te3稳定相. 对快淬样品进行低温SPS快速处理后, x =0.1样品为面心立方结构的单相化合物, 但是x =0.2, 0.3的样品分别析出第二相Sb7Te和Sb2Te3. 由于析出第二相, x=0.2, 0.3样品的电导率增大, Seebeck系数减小, 热导率相应升高, 综合热电性能降低. x=0.1单相样品的功率因子与文献报道的AgSbTe2化合物相当. 元素替代的合金化效应 增强了Cu0.1Ag0.9SbTe2化合物的声子散射, 有效降低了样品的热导率. 因此, 单相样品Cu0.1Ag0.9SbTe2表现出较佳的热电性能, 在620 K时热电优值达到1. 相似文献
13.
The evolution of misfit dislocation network at phase interface and tensile mechanical properties of Ni-based single crystal superalloys at various temperatures and strain rates are studied by using molecular dynamics (MD) simulations. From the simulations, it is found that with the increase of loading, the dislocation network effectively inhibits dislocations emitted in the γ matrix cutting into the phase and absorbs the matrix dislocations to strengthen itself which increases the stability of structure. Under the influence of the temperature, the initial mosaic structure of dislocation network gradually becomes irregular, and the initial misfit stress and the elastic modulus slowly decline as temperature increasing. On the other hand, with the increase of the strain rate, it almost has no effect on the elastic modulus and the way of evolution of dislocation network, but contributes to the increases of the yield stress and tensile strength. Moreover, tension–compression asymmetry of Ni-based single crystal superalloys is also presented based on MD simulations. 相似文献
14.
Ji-Jing Xu Hai-Feng Zou Gui-Mei Gao Shu-Cai Gan 《Journal of magnetism and magnetic materials》2009,321(19):3231-3235
Z-type ferrites doped with La3+, Ba3−xLaxCo2Fe24O41 (x=0.00-0.30), were prepared by sol-gel method. The effect of the substitution La3+ rare-earth ions for Ba2+ ions on the microstructure, complex permeability, permittivity and microwave absorption of the samples was investigated. The results show that the major phase of the ferrites changed to Z-phase when sintering temperature was 1250 °C for 5 h. With the increase of the substitution ratio of La3+ ions from 0.0 to 0.3, the lattice parameters a and c increased gradually, which resulted in the change of the particle shape and size. The data of magnetism showed that the addition of La3+ ions make the ferrite a better soft magnetic material due to increase of magnetization (σs) and decrease of coercivity (Hc). The La3+ ions doped in the ferrite not only improved complex permeability and complex permittivity, but also microwave absorbency. 相似文献
15.
16.
Zhi-Guo LiChang-Ge Piao Xing PanYong-Kai Wei Yan Cheng Guang-Fu Ji 《Physica B: Condensed Matter》2012,407(3):361-367
The elastic, phonon and thermodynamic properties of the divalent alkaline-earth hexaboride SrB6 are investigated by using plane-wave pseudopotential density functional theory method. The calculated structure parameters and bulk modulus are well consistent with the available experiment and theoretical data. The pressure dependences of elastic constants Cij, bulk modulus B0, shear modulus G, Young's modulus E and Poisson's ratio σ are also presented. With these elastic parameters, we investigate the mechanical stability and compressibility of SrB6. For the thermodynamic properties, both phonon and quasi-harmonic Debye model methods are adopted. Through the comparison with experimental and other theoretical results, we found the method of quasi-harmonic Debye model is a little better. Moreover, the phonon dispersion relations are also obtained. It is found that there are two LO/TO splitting around 5 THz and 26 THz, respectively. 相似文献
17.
Magnetoresistance material Sr2FeMoO6 with double perovskite structure was synthesized by microwave sintering method using SrCO3, Fe2O3 and MoO3 as raw materials, with MnO2 for microwave absorber. The phase structure, magnetic and electrical transport properties were investigated by X-ray powder diffraction (XRD) and vibrating-sample magnetometer. XRD analysis shows that the as-synthesized sample is Sr2FeMoO6 with tetragonal crystal structure and I4/mmm space group. The unit cell parameters are a=0.5587 nm, c=0.7894 nm, volume=0.2464 nm3. The calculated grain size of the sample is 31.62 nm, which is obtained by the Scherrer formula using the diffraction data. Magnetism testing results show that the sample Sr2FeMoO6 is ferromagnetic with the magnetic transition temperature of about 380 K. Under 1.0 T magnetic field, the saturation and spontaneous magnetization of Sr2FeMoO6 is 1.25 μB/f.u. and 1.00 μB/f.u. at room temperature. The magnetoresistance ratio of the sample is 28%. Electrical transport properties testing results indicate that the sample exhibits typical semiconductor behavior. The conductive mechanism of Sr2FeMoO6 is highly dependent on temperature: within the temperature range of 100–300 K, the mechanism is attributed to the small polaron variable-range hopping model; while it is ascribed to the adiabatic small polaron model within the temperature range of 80–100 K. 相似文献
18.
Structures and luminescence properties of Yb3+ in the double perovskites Ba2YB'O6 (B'=Ta5+, Nb5+) phosphors 下载免费PDF全文
The Yb3+ doped Ba2YB'O6 (B'=Ta5+, Nb5+) were prepared by high temperature solid-state reaction method, their structures were determined by x-ray diffraction and refined by Rietveld method. The diffuse reflection absorption, excitation and emission spectra of Yb3+:Ba2YB'O6 (B'=,Ta5+, Nb5+) were measured at room temperature. Under the excitation of ultraviolet light, these phosphors exhibit broad charge transfer band emissions of TaO6 or NbO6 centre with large Stokes shift. The Yb3+ doped into these hosts are situated at Y3+ sites of cubic symmetry (Oh). The experimental energy levels of Yb3+ in Ba2YTaO6 and Ba2YNbO6 were determined by photoluminescence and diffuse reflection absorption spectra. Their wavefunctions and theoretical energy levels were obtained by diagonalising the Hamiltonian matrix. The experimental energy levels were fitted by Levenberg--Marquardt iteration algorithm to determine crystal field parameters. Then, the magnetic-pole transition line strengths of Yb3+:Ba2YB'O6(B'=Ta5+, Nb5+) from (2F5/2)Γ8- to the low-energy states were calculated. 相似文献
19.
采用平面波赝势密度泛函理论方法对0—60 GPa静水压下BC5 六角晶系P3m1和四方晶系I4m2结构的平衡态晶格常数、弹性常数、各向异性以及泊松比与Cauchy扰动进行了研究. 研究结果表明, BC5的两种结构在高压下是稳定的, 且不可压缩性随着压强的增加而增大. 另外, 对其电子结构也进行了计算, 计算结果表明, BC5存在一个较宽的带隙, 两种原子间有较强的共价杂化, 材料的性质主要由B的2p1和C的2p2态电子共同决定. 压强对材料带隙和费米能级附近的态密度几乎没有影响, 只引起微小的漂移, 可推断其很好的高压稳定性. 相似文献
20.
用高温熔融法制备了相同质量百分比浓度4%Tm2O3掺杂浓度下(90-x)GeO2-xNb2O5-10Na2O(其中数字为摩尔百分比x=1,2,4,6,8)以及Tm2O3掺杂浓度分别为质量百分比1%,2%,3%,4%下86GeO2-4Nb2O5-10Na2O(其中数字为摩尔分数)系列玻璃.研究了Nb2O5组分对玻璃热稳定性,荧光强度和J-O参数的影响.应用Judd-Ofelt理论,计算了Tm3+离子在Nb2O5浓度不同时的J-O强度参数(Ω2,Ω4,Ω6)及Tm3+离子各激发态能级的自发跃迁概率、荧光分支比以及辐射寿命等光谱参量.根据McCumber理论,计算了Tm3+离子能级3F4→3H6(1.8 μm)跃迁的吸收截面和受激发射截面.从获得的吸收截面、发射截面与离子掺杂浓度计算了1.8 μm荧光波段的增益截面曲线.在808 nm波长光的激发下,研究了Tm3+掺杂玻璃在1.47与1.8 μm附近的荧光特性.发现当Tm2O3掺杂浓度为质量百分比3%时,在1.8 μm处的荧光强度达最大,然后随着掺杂浓度的增大,其荧光强度反而降低;当Nb2O5摩尔分数含量大约在2%时,Tm3+在1.8 μm处的荧光强度最强.并讨论了Nb2O5组分变化对玻璃结构与光谱特性的影响情况.
关键词:
3+掺杂锗铌酸盐玻璃')" href="#">Tm3+掺杂锗铌酸盐玻璃
红外光谱性质
交叉弛豫
2O5')" href="#">Nb2O5 相似文献