首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substrates for the surface-assisted laser desorption ionization (SALDI) technique were prepared using electrophoresis of gold nanoparticles produced by laser ablation in liquids. Throughout the preparation, no supplemental reagent was added for the stabilization and deposition of nanoparticles. Nanoparticles were deposited more uniformly using the electrophoresis technique than using dropping of the solution. Results demonstrated that the higher uniformity of the deposition of nanoparticles improved the reproducibility of SALDI measurements. Furthermore, the thickness of the deposited nanoparticles influences the SALDI efficiency.  相似文献   

2.
Tin dioxide (SnO2) nanoparticles having 3 nm size were synthesized by irradiating pure tin metal using high power Nd:YAG laser in deionized water. Formation of nano-SnO2 crystallites was confirmed by X-ray diffraction (XRD) and AFM study. UV-vis absorption spectral studies showed a peak at 240 nm. FTIR spectrum showed a band in the range of 400-700 cm−1 which was assigned to Sn-O antisymmetric vibrations. Photoluminescence spectrum of synthesized SnO2 nanoparticles showed peak corresponding to 3.175, 2.901 and 2.613 eV respectively.  相似文献   

3.
Nitrogen-doped TiO2 nanoparticles have been prepared by the IR laser pyrolysis technique. A sensitized mixture of TiCl4 (vapors) and N2O was used as titanium and nitrogen precursors, respectively. The structural properties of the resultant N-doped nanoparticles such as the phase formation and the average particle size and distributions were investigated by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The phase composition varied from almost pure anatase to mixtures of rutile and anatase. A decrease of the mean particle diameters from about 18 nm in case of the almost pure anatase sample to about 13 nm in case of the anatase-rutile mixture is observed. XPS analysis suggests and interstitial character of the doping process.  相似文献   

4.
We performed laser ablation of a silver plate in polyvinylpyrrolidone (PVP) aqueous solutions to prepare silver nanoparticles. Secondary laser irradiation onto the prepared colloidal solutions was also carried out. It was revealed that the formation efficiency was increased by addition of PVP as well as the stability of nanoparticles. The result of shadowgraph measurements suggested that the increased ablation efficiency by PVP is attributable to increased secondary etching efficiency by the solvent-confined plasma toward the silver plate. On the other hand, the size decrease of the nanoparticles by addition of PVP was more remarkable during the secondary irradiation process than in the laser ablation (nanoparticle preparation) process. This result indicates that emitted materials interact less sufficiently with PVP molecules in the laser ablation process than in the secondary laser irradiation process.  相似文献   

5.
We report on the formation of self-organized nanostructures (NS) on bulk Al under its ablation in air and liquids with femtoseconds (fs) laser pulses. In case of exposure into liquids, NS are regularly formed on the Al surface with an average period of about 200 nm, independent of the laser polarization. A dispersion of Al nanoparticles (NPs) into the liquid additionally occurs. Irregular nano-bumps are produced when the irradiation is performed in air. NP dispersions as well as NS formed on Al surface show a characteristic absorption peak in the near UV which has been attributed to plasmon oscillation of electrons. The wings of this peak extending to the visible, lead to a distinct yellow coloration of the processed Al surface and the liquid dispersions. Ultrafast laser processing of bulk Al in liquids may be potentially a promising technique for efficient production of nanosized aluminum.  相似文献   

6.
Excimer laser ablation at 308 nm has been used to texture the surfaces of a variety of materials of interest for optoelectronic and biotechnological applications. Using a range of pre- and post-processing methods, we are able to produce nano-, micro- and meso-scale features over large areas rapidly in materials such as crystalline Si, porous silicon and TiO2. Texturing of porous silicon leads to the growth of crystalline dendritic structures, which distinguishes them dramatically from the conical pillars formed from crystalline silicon. Regular arrays of Si microdots are formed by irradiating a Si surface pre-covered with a Cr thin film grating. Nano-crystalline porous TiO2 films are easily ablated or compacted with laser irradiation. However, at low enough laser fluence, surface roughening without complete loss of porosity is possible.  相似文献   

7.
Experimental results are presented on ablation of metals (W, Cu, brass and bronze) in a liquid environment (e.g., ethanol or water) by irradiation with either a pulsed copper vapor laser (0.51 μm) or a pulsed Nd:YAG laser (1.06 μm). The target material is ejected into surrounding liquid in the form of nanoparticles. In a certain range of laser parameters (fluence and number of laser shots) the surface of the solid target is composed of micro-cones having a regular structure. The distance between neighboring micro-cones in the structure depends on the laser spot size. The structures allow the observation of up-conversion of the laser frequency due to generation of the second harmonics in the eye retina.  相似文献   

8.
The use of Raman and anti-stokes Raman spectroscopy to investigate the effect of exposure to high power laser radiation on the crystalline phases of TiO2 has been investigated. Measurement of the changes, over several time integrals, in the Raman and anti-stokes Raman of TiO2 spectra with exposure to laser radiation is reported. Raman and anti-stokes Raman provide detail on both the structure and the kinetic process of changes in crystalline phases in the titania material. The effect of laser exposure resulted in the generation of increasing amounts of the rutile crystalline phase from the anatase crystalline phase during exposure. The Raman spectra displayed bands at 144 cm−1 (A1g), 197 cm−1 (Eg), 398 cm−1 (B1g), 515 cm−1 (A1g), and 640 cm−1 (Eg) assigned to anatase which were replaced by bands at 143 cm−1 (B1g), 235 cm−1 (2 phonon process), 448 cm−1 (Eg) and 612 cm−1 (A1g) which were assigned to rutile. This indicated that laser irradiation of TiO2 changes the crystalline phase from anatase to rutile. Raman and anti-stokes Raman are highly sensitive to the crystalline forms of TiO2 and allow characterisation of the effect of laser irradiation upon TiO2. This technique would also be applicable as an in situ method for monitoring changes during the laser irradiation process.  相似文献   

9.
Nanoparticle and metal phthalocyanine (MPc) transparent colloidal aqueous solutions were directly obtained by 355 nm YAG laser ablation. We found that too long an irradiation time does not contribute to producing nanoparticles and their generation efficiency increases with a low solution temperature. We believe this due to nanoparticle reassociation which is caused by hydrophobicity. To prevent generated nanoparticles from reassociating we performed experiments adding two kinds of ionic and nonionic surfactants into solution. We found five characteristics of nanoparticle generation from adding surfactants to a solution regardless of the type of surfactant used. These characteristics are that: (1) production efficiency increases; (2) stability is better after irradiation; (3) irradiation intensity needed to induce nanoparticle generation becomes lower; (4) mean size of the generated nanoparticles becomes smaller; and (5) crystalline structures of oxo(phthalocyaninato) vanadium (IV) (VOPc) are controllable by changing the surfactant concentration.  相似文献   

10.
Laser exposure of suspensions of nanoparticles in liquids leads to excitation of high energy levels in both liquid and nanoparticle material. The emission spectrum of the colloidal solution under exposure of a suspension metallic nanoparticles in water to radiation of a Nd:YAG laser of a picosecond range of pulse duration is discussed. Excitation of nuclear energy levels and neutron release is experimentally studied on the model system of transmutation of Hg into Au that occurs under exposure of Hg nanodrops suspended in D2O. The proposed mechanism involves: (i) emission of X-ray photons by Hg nanoparticles upon laser exposure, leading to neutron release from D2O, (ii) initiation of Hg → Au transmutation by the capture of neutrons. The effect of transmutation is more pronounced using 196Hg isotope instead of Hg of natural isotope composition. The influence of laser pulse duration on the degree of transmutation (from fs through ns range) is discussed.  相似文献   

11.
We report measurements of the laser induced breakdown threshold in lithium tantalate with different number of pulses delivered from a chirped pulse amplification Ti: sapphire system. The threshold fluences were determined from the relation between the diameter D2 of the ablated area and the laser fluence F0. The threshold of lithium tantalite under single-shot is found to be 1.84 J/cm2, and the avalanche rate was determined to be 1.01 cm2/J by calculation. We found that avalanche dominates the ablation process, while photoionization serves as a free electron provider.  相似文献   

12.
In this paper we report the formation of gold nanoparticles during laser ablation of gold target in water in the absence of any additives. The experiments were carried out by using the radiation of the pulsed Nd:YAG laser, operating at the second (532 nm, 10 ns, 10 Hz), or the fourth harmonic (266 nm) wavelengths. The properties of the nanoparticles were found to be susceptible to the additional 532 and 266 nm laser irradiation. It has been established that both the mean size of the nanoparticles and their stability could be varied by proper selection of the parameters of laser ablation and postirradiation such as laser fluence and wavelength combinations.  相似文献   

13.
Carbon nitride thin films with different nitrogen concentration have been deposited at different N2 and N2/Ar mixed partial pressures. Time-integrated optical emission spectroscopy measurements have been performed to gather information on the nature of the chemical species present in the plasma. Both the CN and C2 molecular species have been observed. Fast photography imaging of the expanding plume revealed the change of the dynamics from a free expansion at low pressure to a shock wave formation followed then by the plume stopping upon increasing the gas pressure values. Raman and XPS spectroscopy measurements performed on the deposited thin films revealed that the films, structure strongly depends on the dynamics of the expansion plasma regime rather than on the partial pressure at which the deposition takes place.  相似文献   

14.
Au nanoparticles, which were photoreduced by a Nd:YAG laser in HAuCl4 solution containing TiO2 colloid and accompanied by the TiO2 particles, were deposited on the substrate surface. The film consisting of Au/TiO2 particles was characterized by the absorption spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The adhesion between the film and substrate was evaluated by using adhesive tape test. It was found that the presence of TiO2 dramatically enhanced the adhesion strength between the film and the substrate, as well as the deposition rate of film. The mechanism for the deposition of Au/TiO2 film was also discussed.  相似文献   

15.
TiO2 nanoparticles were synthesized via the laser pyrolysis of titanium tetrachloride-based gas-phase mixtures. In the obtained nanopowders, a mixture of anatase and rutile phases with mean particle size of about 14 nm was identified. Using the thermal heated laser nanopowders, mechanically stable films were produced by immobilizing titania nanopowders on glass substrates (the doctor blading method followed by compression). The photocatalytic activity of the prepared films was tested by the degradation of 4-chlorophenol in an aqueous solution under UV-illumination. By referring to known commercial samples (Degussa P25) similarly prepared, higher photocatalytic efficiency was found for the laser-prepared samples.  相似文献   

16.
Polyynes were prepared by liquid-phase laser ablation of a graphite target at 1064 nm and identified by analyzing UV absorption spectra in deionized water and various aqueous solutions. We observed that major UV absorption peaks coincide with the electronic transitions corresponding to linear hydrogen-capped polyynes (CnH2: n = 6, 8, 10). The peak intensities increased when polyynes were produced by irradiating the target immersed in acidic media, while those were relatively weak in basic media. This leads us to conclude that OH or H+ ions play a certain role in the formation of polyynes.  相似文献   

17.
A sonochemical method has been used to prepare negative electrode materials containing intermetallic nanoparticles and polyacrylonitrile (PAN). The ultrasound irradiation is applied to achieve small particle size. After annealing at 490 °C under Ar-flow, the polymer PAN is partially carbonized and the metallic nanoparticles are surrounded by a carbonaceous matrix. The main metallic phase is CoSn2. The carbonaceous coating and the surface oxides have been explored by using XPS. The resulting CoSn2-carbonaceous phase electrode (CoSn2@C) shows improved electrochemical behavior (ca. 450 mAh/g after 50 cycles) in comparison with previous reports on pure crystalline CoSn2. The reaction between CoSn2@C and Li has been studied by using XRD and 119Sn Mössbauer spectroscopy. The formation of large grains of crystalline LixSn phases after the first discharge is discarded. The small particle size which is achieved by using ultrasonication and the carbonaceous matrix contribute to maintain the Co-Sn interactions during the electrochemical cycling. The aggregation of the nanosized metallic particles upon electrochemical cycling can be suppressed by the carbonaceous matrix (pyrolytic PAN).  相似文献   

18.
Be3N2 thin films have been grown on Si(1 1 1) substrates using the pulsed laser deposition method at different substrate temperatures: room temperature (RT), 200 °C, 400 °C, 600 °C and 700 °C. Additionally, two samples were deposited at RT and were annealed after deposition in situ at 600 °C and 700 °C. In order to obtain the stoichiometry of the samples, they have been characterized in situ by X-ray photoelectron (XPS) and reflection electron energy loss spectroscopy (REELS). The influence of the substrate temperature on the morphological and structural properties of the films was investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The results show that all prepared films presented the Be3N2 stoichiometry. Formation of whiskers with diameters of 100-200 nm appears at the surface of the films prepared with a substrate temperature of 600 °C or 700 °C. However, the samples grown at RT and annealed at 600 °C or 700 °C do not show whiskers on the surface. The average root mean square (RMS) roughness and the average grain size of the samples grown with respect the substrate temperature is presented. The films grown with a substrate temperature between the room temperature to 400 °C, and the sample annealed in situ at 600 °C were amorphous; while the αBe3N2 phase was presented on the samples with a substrate temperature of 600 °C, 700 °C and that deposited with the substrate at RT and annealed in situ at 700 °C.  相似文献   

19.
Optical emission spectra of the plasma produced by 1.06 μm Nd:YAG laser ablation of SnO2:Sb transparent conducting thin film were recorded and analyzed as functions of distance from the target surface and incident laser power density in air and in vacuum. Ambient gas effects on pulsed laser ablation of target were analyzed in detail. We also discussed how the air takes part in the plasma evolution process and confirmed that the ignition of the air plasma is by the collisions between the energetic electrons and the nitrogen atoms through a cascade avalanche process.  相似文献   

20.
Pulsed laser ablation (PLA) has been widely employed in industrial and biological applications and in other fields. The environmental conditions in which PLA is conducted are important parameters that affect both the solid particle cloud and the deposition produced by the plume. In this work, the generation of nanoparticles (NPs) has been developed by performing PLA of silver (Ag) plates in a supercritical CO2 medium. Ag NPs were successfully generated by allowing the selective generation of clusters. Laser ablation was performed with an excitation wavelength of 532 nm under various pressures and temperatures of CO2 medium. On the basis of the experimental result, both surface of the irradiated Ag plate and structure of Ag NPs were significantly affected by the changes in supercritical CO2 pressure and temperature. With increasing irradiation pressure, plume deposited in the surrounding crater created by the ablation was clearly observed. In Field Emission Scanning Electron Microscopy (FE-SEM) the image of the generated Ag NPs on the silicon wafer and the morphology of Ag particles were basically a sphere-like structure. Ag particles contain NPs with large-varied diameter ranging from 5 nm to 1.2 μm. The bigger Ag NPs melted during the ablation process and then ejected smaller spherical Ag NPs, which formed nanoclusters attached on the molten Ag NPs. The smaller Ag NPs were also formed around the bigger Ag NPs. Based on the results, this new method can also be used to obtain advanced nano-structured materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号