首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
La0.8Sr0.2MnO3 films were prepared on SrTiO3 (STO) and LaAlO3 (LAO) substrates using excimer laser-assisted metal organic deposition (ELAMOD). For the LAO substrate, no epitaxial La0.8Sr0.2MnO3 film was obtained by laser irradiation in the fluence range from 60 to 110 mJ/cm2 with heating at 500 °C. On the other hand, an epitaxial La0.8Sr0.2MnO3 film on the STO substrate was formed by laser irradiation in the fluence range from 60 to 100 mJ/cm2 with heating at 500 °C. To optimize the electrical properties for an IR sensor, the effects of the laser fluence, the irradiation time and the film thickness on the temperature dependence of the resistance and temperature coefficient of resistance (TCR: defined as 1/R·(dR/dT)) of the LSMO films were investigated. An LSMO film on the STO substrate that showed the maximum TCR of 3.9% at 265 K was obtained by the ELAMOD process using the KrF laser.  相似文献   

2.
Oxide heterojunctions made of p-type La0.8Sr0.2MnO3 (LSMO) and niobium-doped n-type SrTiO3 (STO:Nb) have been fabricated by the pulsed laser deposition (PLD) technique and characterized under UV light irradiation by measuring the current-voltage, photovoltaic properties and the junction capacitance. It is shown that the heterojunctions work as an efficient UV photodiode, in which photogenerated holes in the STO:Nb substrate are injected to the LSMO film. The maximum surface hole density Q/e and external quantum efficiency γ are estimated to be 8.3×1012 cm−2 and 11% at room temperature, respectively. They are improved significantly in a p-i-n junction of LSMO/STO/STO:Nb, where Q/e and γ are 3.0×1013 cm−2 and 27%, respectively.  相似文献   

3.
Ferromagnetic La0.7Sr0.3MnO3 (LSMO) and antiferromagnetic La0.33Ca0.67MnO3 (LCMO) layers were grown on SrTiO3 (STO) substrates by the pulsed laser deposition technique. LSMO films had rougher surfaces and larger grain sizes than LCMO films. Fully strained bilayers, in which each layer was as thin as 10 nm, were prepared by changing their stacking sequences, i.e. LSMO/LCMO/STO and LCMO/LSMO/STO. The former had higher TC (350 K) than the latter (300 K), and exchange bias effects were only observed in the former bilayers. This revealed that microstructures could play an important role in the transport and magnetic properties of manganese oxide thin films.  相似文献   

4.
A series of Pr0.5Sr0.5MnO3 (PSMO) films with various thickness were epitaxially grown on substrates of (0 0 1)-oriented (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 (LSAT), LaAlO3 (LAO) and SrTiO3 (STO), and (0 1 1)-oriented STO using pulse laser deposition. Influence of epitaxial growth on phase competition was investigated. A ferromagnetic metal to antiferromagnetic insulator (FMM-AFI) transition upon cooling is present in both largely compressed situations deposited on LAO (0 0 1) and tensile cases deposited on STO (0 0 1) but absent in little strained films grown on LSAT (0 0 1), indicating that the antiferromagnetic insulating state is favored by strains. On the other hand, the 400 nm films deposited on (0 1 1)-oriented STO as well as LAO substrates show FMM-AFI transition. These results reveal that both the orientation of epitaxial growth and substrate-induced strain affect the FMM-AFI transition.  相似文献   

5.
La0.8Sr0.2MnO3 (LSMO) thin films were fabricated on alumina substrates by an improved sol-gel dip-coating process. It was found that multiple dip-coating process could not be performed until the pre-firing temperature reached 600 °C. Different amounts of LSMO powders were added to precursor solution with an aim to avoid cracks in LSMO thin films during calcining caused by the shrinkage mismatch between the film and the substrate. The structure and surface morphology of the films prepared from precursors with and without LSMO powders were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the addition of 56.4 wt.% LSMO powders into the sol-gel precursor solution significantly modified the microstructure of films. A single LSMO perovskite phase was obtained on alumina substrate after calcining at 800 °C for 4 h by the improved sol-gel method. The sheet resistance of the films prepared with different processing parameters was measured by four-point dc method. Results indicated that the sheet resistance of films decreased with increasing the number of coating applications and the amount of LSMO powders.  相似文献   

6.
In this study, La0.5Ca0.5MnO3 (LCMO) films, at the boundary between ferromagnetic metallic and charge-ordered antiferromagnetic insulator according to the bulk phase diagram, were epitaxially grown on (0 0 1) SrTiO3 (STO) and SrLaAlO4 (SLAO) substrates by pulsed laser deposition technique. The films were analyzed by X-ray diffraction, magnetization and magnetoresistance measurements. A considerably higher magnetization was measured for 290-nm-thick film on SLAO substrate compared to the film on STO substrate, although both films have the same chemical composition, thickness and epitaxial orientation. The film on SLAO shows a metal-insulator (MI) transition, which occurs at higher temperatures with increasing applied magnetic field, whereas only insulating behavior was observed for the 290-nm-thick film on STO except for the highest applied magnetic field (7 T). In addition, transport measurements were performed and analyzed by Mott's variable range hopping (VRH) model to correlate the resistivity of the films with the Jahn-Teller strain (εJ−T) in the structure.  相似文献   

7.
La0.8Sr0.2MnO3 (LSMO) films were prepared on LaAlO3 substrates by excimer laser metal organic deposition (ELMOD) at 500 °C. The temperature dependence of resistance of the LSMO films was investigated by changing the laser fluence, irradiation time, and film thickness. It was found that the resistance of the LSMO films 80 nm in thickness that were irradiated by an ArF laser at a fluence of 100 mJ/cm2 for 60 min showed a metallic temperature dependence, and the maximum temperature coefficient of resistance of the films (defined as 1/R×dR/dT) was 3.4% at 265 K. PACS 81.15.-z; 81.15.Fg; 81.15.Np; 73.61.-r; 71.30.+h  相似文献   

8.
Ca-doped LaMnO3 (LCMO) thin films have been successfully prepared on SrTiO3 (STO) and [(LaAlO3)0.3-(SrAlTaO6)0.7] (LSAT) substrates using the excimer laser assisted metal-organic deposition (ELAMOD) process. The crystallization and the epitaxial growth of the amorphous metal-organic LCMO thin films have been achieved using a KrF excimer laser irradiation while the substrates were kept at constant temperature of 500 °C. Epitaxial films were obtained using laser fluence in the interval of 50-120 mJ/cm2. The microstructure of the LCMO films was studied using cross-section transmission electron microscopy. High quality of LCMO films having smooth surfaces and sharp interfaces were obtained on both the STO and the LSAT substrates. The effect of the laser fluence on the temperature coefficient of resistance (TCR) was investigated. The largest values of TCR of the LCMO grown on the LSAT and the STO substrates of 8.3% K−1 and 7.46% K−1 were obtained at different laser fluence of 80 mJ/cm2 and 70 mJ/cm2, respectively.  相似文献   

9.
Ca0.997Pr0.002TiO3 thin films that show strong red luminescence were successfully prepared by means of an excimer laser assisted metal organic deposition process with a KrF laser at a fluence of 100 mJ/cm2 at 100 °C. The CPTO films grew on the silica, borosilicate, and indium-tin-oxide coated glasses. The crystallinity of the Ca0.997Pr0.002TiO3 films depended on the substrates; the borosilicate and indium-tin-oxide coated glasses with a large optical absorption of a KrF laser (λ = 248 nm) were effective for the crystallization for the Ca0.997Pr0.002TiO3. In addition, a high thermal conductivity of the indium-tin-oxide coated glass substrate could also improve the crystallinity due to an enhancement of thermal propagation to the film. Oxygen annealing at 500 °C for 6 h successfully eliminated the oxygen vacancy produced by the laser irradiation, and also remarkably improved the PL emission intensity. Thus, we have shown that substrate properties such as an optical absorbance and a thermal conductivity were quite important factors for the crystal growth and the PL emission for the Ca0.997Pr0.002TiO3 in the excimer laser assisted metal organic deposition process.  相似文献   

10.
We have grown alloy and superlattice films consisting of SrTiO3 (STO) and LaAlO3 (LAO) by pulsed laser deposition using composition-spread technique. All the (STO)x(LAO)1−x (0 ≤ x ≤ 1) alloy and superlattice films exhibited a single-phase perovskite structure. The optical properties of these films were characterized by absorption spectroscopy at room temperature. The spectra show a broad absorption due to O 2p-Ti 3d(t2g) transition in an ultraviolet region. We found that absorption edges of both alloy and superlattice films systematically shifted to higher energy with increasing LAO composition. Clear difference was observed in the composition dependence of the indirect and a direct band edges.  相似文献   

11.
Epitaxial Sr0.6Ba0.4Nb2O6(SBN60)/La0.7Sr0.3CoO3 heterostructures were fabricated on LAO(0 0 1) substrates using pulsed laser deposition (PLD). Their structural properties were investigated by X-ray diffraction. The θ-2θ scans showed single crystalline Sr1−xBaxNb2O6 (SBN) and LaxSr1−xCoO3 (LSCO) layers with a 〈0 0 1〉 orientations perpendicular to the substrate plane. Phi scans on the (2 2 1) plane of SBN layer indicated that the films have two in-plane orientations with respect to the substrate. The SBN unit cells were rotated in the plane of the film by ±18.4° as well as ±45° with respect to the LAO substrate. This rotation was explained by considering the lattice matching between films and substrate, and minimization of electrostatic energy. Spectroellipsometry (SE) was used to characterize the depth profile, the microstructural inhomogeneities, including voids and surface roughness, refractive indices and extinction coefficients of the films.  相似文献   

12.
Perfect epitaxial growth of La0.67Ca0.33MnO3 (LCMO) thin film has been achieved on (1 0 0) LaAlO3 (LAO) single crystal substrate by radio frequency sputtering method. X-ray diffraction (XRD) and electron diffraction analysis indicates that La0.67Ca0.33MnO3 film grows epitaxially on LaAlO3 along [1 0 0] direction of the substrate. The resistivity variation with temperature of the film shows a sharp metal to semiconductor transition peak around 253 K, which is close to that of the target. The magnetoresistance (MR) also reveals high quality epitaxy film characteristic at low temperatures and near the metal to semiconductor transition temperature.  相似文献   

13.
Meng He 《Applied Surface Science》2007,253(14):6080-6084
La0.9Sr0.1MnO3 (LSMO) ultrathin films with various thickness (in the range of 5-50 unit cells) are grown on (0 0 1) substrates of the single-crystal SrTi0.99Nb0.01O3 by laser molecular-beam epitaxy (laser-MBE), and the surface morphology of these films were measured by scanning tunneling microscopy (STM). STM images of LSMO ultrathin film surface reveal that surface morphology becomes more flat with increasing film thickness. This study highlights the important effect of strain caused by the lattice mismatch between substrates and ultrathin films. And the results should be useful to the investigations on growing manganite perovskite materials.  相似文献   

14.
Epitaxial Sb-doped SnO2 (0 0 1) thin film on a TiO2 (0 0 1) substrate was successfully prepared by laser-assisted metal organic deposition at room temperature. The effects of the precursor thin film and laser fluence on the resistivity, carrier concentration, and mobility of the Sb-doped SnO2 film were investigated. The resistivity of the Sb-doped SnO2 film prepared by direct irradiation to metal organic film is one order of magnitude lower than that of film prepared by irradiation to amorphous Sb-doped SnO2 film. From an analysis of Hall measurements, the difference between the resistivity of the Sb-doped SnO2 film prepared using the metal organic precursor film and that of amorphous precursor film appears to be caused by the mobility. Direct conversion of the metal organic compound by excimer laser irradiation was found to be effective for preparing epitaxial Sb-doped SnO2 film with low resistivity.  相似文献   

15.
We report a large enhancement (∼90%) in magnetoresistance in La0.82Sr0.18MnO3 (LSMO) layers by incorporating a π-conjugated semiconducting polymer layer in between them. The epitaxial LSMO layers were deposited by DC magnetron sputtering on SrTiO3 single crystal substrates and have FM transition temperature (TC)∼310 K. A semiconducting polymer poly(3-octylthiophene) (P3OT) layer was deposited over the epitaxial LSMO layer by solution dip coating technique and with subsequent deposition of another epitaxial LSMO layer, forming a LSMO-P3OT-LSMO heterostructure. The effect of P3OT incorporation on magnetotransport properties of this heterostructure has been examined in the temperature range 77-350 K. Large MR enhancement observed near room temperature in the FM regime is explained in terms of efficient magnetic field dependent carrier injection at LSMO/P3OT interface.  相似文献   

16.
We have studied the epitaxial growth of perovskite manganite LaMnO3 (LMO) on SrTiO3(1 0 0) in the excimer laser assisted metal organic deposition process. The LMO was preferentially grown from the substrate surface by the KrF laser irradiation. The study of amorphous LMO film thickness dependence on epitaxial growth under the excimer laser irradiation revealed that the photo-thermal heating effect strongly depended on the amorphous film thickness due to a low thermal conductivity of amorphous LMO: the ion-migration for chemical bond-forming at the reaction interface would be strongly enhanced in the amorphous LMO film with the large film thickness about 210 nm. On the other hand, the photo-chemical effect occurred efficiently for the amorphous film thickness in the range of 35-210 nm. These results indicate that the epitaxial growing rate was dominated by the photo-thermal heating after the photo-chemical activation at the growth interface.  相似文献   

17.
TiO2 film of around 850 nm in thickness was deposited on a soda-lime glass by PVD sputtering and irradiated using one pulse of krypton-fluorine (KrF) excimer laser (wavelength of 248 nm and pulse duration of 25 ns) with varying fluence. The color of the irradiated area became darker with increasing laser fluence. Irradiated surfaces were characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Surface undergoes thermal annealing at low laser fluence of 400 and 590 mJ/cm2. Microcracks at medium laser fluence of 1000 mJ/cm2 are attributed to surface melting and solidification. Hydrodynamic ablation is proposed to explain the formation of micropores and networks at higher laser fluence of 1100 and 1200 mJ/cm2. The darkening effect is explained in terms of trapping of light in the surface defects formed rather than anatase to rutile phase transformation as reported by others. Controlled darkening of TiO2 film might be used for adjustable filters.  相似文献   

18.
Nearly 50-nm thick La0.7Sr0.3MnO3 (LSMO) films were grown on Si substrates using molecular beam epitaxy on (001) Si substrates over-layered by a 20 nm thick SrTiO3 (STO) or by a 20 nm thick CaTiO3 (CTO) film. In addition, a reference LSMO film was directly deposited on a (001) STO substrate by pulsed laser deposition. For all the samples, X-ray diffraction revealed an excellent epitaxy of the LSMO film and small mosaicity around (001), with in-plane [100] and [010] cubic axes. The LSMO/CTO films are in-plane compressed while the LSMO/STO ones are in-plane extended. The temperature dependence of their static magnetic properties was studied using a SQUID, showing a Curie temperature overpassing 315 K for all the samples. Hysteresis loops performed at room temperature (294 K) with the help of a vibrating sample magnetometer (VSM) are also discussed. At 294 K Micro-strip ferromagnetic resonance (MS-FMR) was used to investigate the dynamic magnetic properties. It allows concluding to a strong anisotropy perpendicular to the films and to a weak fourfold in-plane anisotropy with easy axes along the [110] and [1[`1]0 1\bar{1}0 ] directions. Their values strongly depend on the studied sample and are presumably related to the strains suffered by the films.  相似文献   

19.
A pulsed laser deposition technique was used to grow ferromagnetic La0.7Sr0.3MnO3 (LSMO) films on antiferromagnetic La0.33Ca0.67MnO3 (LCMO) and Pr0.7Ca0.3MnO3 (PCMO) films in bilayer forms. The LSMO film on the PCMO layer had a more elongated out-of-plane lattice than that on the LCMO layer. The former had a lower ferromagnetic transition temperature (320 K) than the latter (350 K). The enhanced low-temperature magnetoresistance of the LSMO/PCMO bilayer suggests that the spin frustration is stronger at this bilayer than in the LSMO/LCMO bilayer. These differences indicate that strain state and defect concentration play important roles in governing interfacial spin interactions.  相似文献   

20.
A comparative study of the out-of-plane anisotropic magnetoresistance (AMR) in single crystalline and polycrystalline thin films of phase separated manganite Nd0.51Sr0.49MnO3 has been carried out. On-axis DC magnetron sputtering was used to deposit the single crystalline films (30 and 100 nm in thickness) on single crystal (0 0 1) LaAlO3 (LAO) and polycrystalline films (100 nm) on (1 0 0) Yttrium-stabilized ZrO2 (YSZ) substrates. The in-plane and out-of-plane magnetotransport properties of these films differ significantly. A large low field AMR is observed in all the films. AMR shows a peak below the insulator-metal transition temperature in the single crystalline films, while the same increases monotonically in the polycrystalline film. Relatively larger low field AMR (∼20% at T=78 K and H=1.7 kOe) in the polycrystalline films suggests the dominance of the shape anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号