首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
A general method of solving problems of the interaction of stationary discontinuities is proposed. The problem of the oblique incidence of an Alfvén plane-polarized discontinuity on a contact discontinuity is examined in the general formulation. A solution is constructed numerically over the entire range of variation of the governing parameters. A number of effects associated with the magnetohydrodynamic nature of the interaction are explored. For example, the formation in space of sectors in which the density falls by several orders (almost to a vacuum) is detected. The solutions obtained are of interest, for example, for investigating the interaction between Alfvén discontinuities in the solar wind and the magnetopause, plasmopause and other inhomogeneities whose boundary can be approximated by a contact discontinuity [13–15].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 131–142, January–February, 1990.  相似文献   

2.
The reference map, defined as the inverse motion function, is utilized in an Eulerian-frame representation of continuum solid mechanics, leading to a simple, explicit finite-difference method for solids undergoing finite deformations. We investigate the accuracy and applicability of the technique for a range of finite-strain elasticity laws under various geometries and loadings. Capacity to model dynamic, static, and quasi-static conditions is shown. Specifications of the approach are demonstrated for handling irregularly shaped and/or moving boundaries, as well as shock solutions. The technique is also integrated within a fluid–solid framework using a level-set to discern phases and using a standard explicit fluid solver for the fluid phases. We employ a sharp-interface method to institute the interfacial conditions, and the resulting scheme is shown to efficiently capture fluid–solid interaction solutions in several examples.  相似文献   

3.
4.
In this study, a 2-D infinite flexible waveguide is considered. The waveguide carries a weakly nonlinear acoustic fluid. It is bounded on one side by a weakly nonlinear flexible membrane and the other side is rigid. The infinite waveguide is driven at the origin by a piston oscillating at a single frequency. However, we focus only on the positive side of the piston. As the coupled waves propagate in the membrane and the fluid, the modal interactions lead to resonances and beats which form the main focus of this work. A regular perturbation method is used to derive the linear and the quasilinear order equations which are then solved. At the linear order, the primary wavenumbers are solved for and the modes are found to be non-orthogonal because of the flexible membrane. Only the propagating waves are included in the analysis. Both self-mode and cross-mode interactions of the planar and the non-planar modes are considered. The novelty of this work lies in obtaining conditions and the closed form solutions for the resonances and beats along the spatial coordinate. It is found that the self-mode interactions lead to beats only. And in the self-mode interactions, the coupled planar mode plays an important role. On the other hand, the cross-mode interactions can lead to either resonances or beats.  相似文献   

5.
The efficiency and accuracy of grid movement methods for a typical fluid–structure interaction configuration is investigated. The set-up consists of a thin elastic structure including one rotational degree of freedom fixed in a laminar channel flow. Two different cases are considered, i.e., small and large structural deformations. The comparison is carried out by using two algebraic methods, linear and transfinite interpolation, and two elliptic solution strategies also providing boundary orthogonality. A reference solution is obtained from a mixed approach. The evaluation of efficiency and accuracy is based on computation times, number of coupling steps, structural displacements and swiveling frequencies. All mesh movement techniques are employed in the frame of a partitioned solution procedure involving the block-structured finite-volume flow solver FASTEST, the finite-element structural solver FEAP, and the coupling interface MpCCI.  相似文献   

6.
The interaction of a tire with a soft terrain has multiple sources of uncertainties such as the mechanical properties of the terrain, and the interfacial properties between the tire and the terrain. These uncertainties are best characterized using statistical methods such as the development of stochastic models of tire–soil interaction. The quality of the models can be assessed via statistical validation measures or metrics. Although validation of stochastic tire–soil interaction models has recently been reported with good results, it involves longitudinal slip only without considering lateral slip which can occur simultaneously with longitudinal motion. This paper presents results of the validation of a simple stochastic tire–soil interaction model for the more complicated case of combined slip. The statistical methods used for validation include the development of a Gaussian process metamodel, the calibration of model parameters using the approach of the maximum likelihood estimate in conjunction with new test data. The validation of the calibrated model, when compared with test data, is obtained using four validation metrics with good results.  相似文献   

7.
In this research, experimental studies have been performed on the hydrodynamic interaction between two spheres by using particle image velocimetry and measuring the force between the spheres. To approach the system as a resistance problem, a servo-driving system was set-up by assembling a microstepping motor, a ball screw and a linear motion guide for the particle motion. Glycerin and a dilute solution of polyacrylamide in glycerin were used as Newtonian and non-Newtonian fluids, respectively. The polymer solution behaves like a Boger fluid when the concentration is 1000 ppm or less. The experimental results were compared with the asymptotic solution of Stokes equation. The result shows that fluid inertia and unsteadiness play important roles in the particle–particle interaction in the Newtonian fluid. This implies that the motion of two particles in suspension is not reversible even in the Newtonian fluid. In the non-Newtonian fluid, in addition to inertial effect, normal stress differences and viscoelasticity play important roles as expected. In dilute solutions weak shear thinning and the migration of polymer molecules in the inhomogeneous flow field also appear to affect the physics of the problem.  相似文献   

8.
Full scale bubbly flow experiments were performed on a 6 m flat bottom survey boat, measuring the void fraction, bubble velocity and size distributions as the bubbles naturally entrained at the bow of the boat interact with the boat’s boundary layer. Double-tip sapphire optical probes capable of measuring bubbles down to 50 μm in diameter were specifically designed and built for this experiment. The probes were positioned under the hull at the bow near the bubble entrainment region and at the stern at the exit of the bottom flat plate. Motorized positioners were used to vary the probe distance to the wall from 0 to 50 mm. The experiments were performed in fresh water (Coralville Lake, IA) and salt water (Panama City Beach, FL), at varying velocities with most data analysis performed at 10, 14 and 18 knots. The results indicate that the bubbles interact significantly with the boundary layer. At low velocity in fresh water, bubble accumulation under the hull and coalescence are evident by the presence of large bubbles at the stern. At high speeds bubble breakup dominates and very small bubbles are produced near the wall. It is also observed that salt water inhibits coalescence, even at low boat speeds. The void fraction increases with speed beyond 10 knots and peaks near the wall. Bubble velocities show slip with the wall at all speeds and exhibit large RMS fluctuations, increasing near the wall.  相似文献   

9.
We have used a third-order essentially non-oscillatory method to obtain numerical shadowgraphs for investigation of shock–vortex interaction patterns. To search different interaction patterns, we have tested two vortex models (the composite vortex model and the Taylor vortex model) and as many as 47 parametric data sets. By shock–vortex interaction, the impinging shock is deformed to a S-shape with leading and lagging parts of the shock. The vortex flow is locally accelerated by the leading shock and locally decelerated by the lagging shock, having a severely elongated vortex core with two vertices. When the leading shock escapes the vortex, implosion effect creates a high pressure in the vertex area where the flow had been most expanded. This compressed region spreads in time with two frontal waves, an induced expansion wave and an induced compression wave. They are subsonic waves when the shock–vortex interaction is weak but become supersonic waves for strong interactions. Under a intermediate interaction, however, an induced shock wave is first developed where flow speed is supersonic but is dissipated where the incoming flow is subsonic. We have identified three different interaction patterns that depend on the vortex flow regime characterized by the shock–vortex interaction.   相似文献   

10.
This paper presents an experimental study of the interaction between a vortex ring and a moving wall. This type of flow can be considered as modeling, in a simplified way, the interaction between a "typical eddy" and the viscous sublayer of a turbulent boundary layer. In the present study, the vortex ring is considered as a three-dimensional (3D) perturbation of a viscous Stokes layer. The interaction was first characterized by visualization. To obtain quantitative information, digital particle image velocimetry (DPIV) and holographic particle-tracking velocimetry (HPTV) were used. These different techniques led to a precise and detailed characterization of the vortex ring alone and of an interaction in which a hairpin vortex is generated in the Stokes layer. The results obtained show a good similarity between the observed vortex ring and the Oseen model. They also validate the Stokes layer model and show that in the present conditions, the hairpin vorticity is comparable to that of the Stokes layer. The holographic study, which was undertaken to obtain full 3D three-component (3D3C) velocity maps, showed the present limitations of HPTV.  相似文献   

11.
It is important to study the subgrade characteristics of high-speed railways in consideration of the water–soil coupling dynamic problem,especially when high-speed trains operate in rainy regions.This study develops a nonlinear water–soil interaction dynamic model of slab track coupling with subgrade under high-speed train loading based on vehicle–track coupling dynamics.By using this model,the basic dynamic characteristics,including water–soil interaction and without water induced by the high-speed train loading,are studied.The main factors-the permeability coefficien and the porosity-influencin the subgrade deformation are investigated.The developed model can characterize the soil dynamic behaviour more realistically,especially when considering the influenc of water-rich soil.  相似文献   

12.
The standard theory of ideal gases ignores the interaction of the gas particles with the thermal radiation (photon gas) that fills the otherwise vacuum space between them. Although acceptable in most cases, this feature of the theory contrasts with the evidence that all real materials, and hence in particular the particles of a real gas, absorb and radiate thermal energy. The interaction with the thermal radiation contained in the volume of a body may be important in gases. The latter, unlike solids and liquids, are capable of undergoing conspicuous volume changes, which entails large variations in the total amount of radiation that fills their volume in thermal equilibrium conditions. The paper considers a nonstandard ideal gas that differs from the classical one because it interacts with thermal radiation. This interaction is shown to produce temperature changes both in the free expansion of the gas and in its adiabatic mixing with another gas. Taking this kind of interaction into account also avoids the well-known Gibbs’ paradox still keeping the theory within the realm of classical macroscopic thermodynamics, i.e. without resorting to the current statistical mechanics explanation.  相似文献   

13.
An immersed boundary-lattice Boltzmann flux solver (IB–LBFS) for the simulation of two-dimensional fluid–structure interaction (FSI) problems is presented in this paper. The IB–LBFS applies the fractional-step method to split the overall solution process into the predictor step and the corrector step. In the predictor step, the intermediate flow field is predicted by applying the LBFS (lattice Boltzmann flux solver) without considering the presence of immersed object. The LBFS applies the finite volume method to solve N–S (Navier–Stokes) equations for the flow variables at cell centers. At each cell interface, the LBFS evaluates its viscous and inviscid fluxes simultaneously through local reconstruction of the LBE (lattice Boltzmann equation) solutions. In the corrector step, the intermediate flow field is corrected by the implicit boundary condition-enforced immersed boundary method (IBM) so that the no-slip boundary conditions can be accurately satisfied. The IB–LBFS effectively combines the advantages of the LBFS in solving the flow field and the flexibility of the IBM in dealing with boundary conditions. Consequently, the IB–LBFS presents a much simpler and more effective approach for simulating complex FSI problems on non-uniform grids. Several test cases, including flows past one and two cylinders with prescribed motions, are firstly simulated to examine the accuracy of present solver. After that, two strongly coupled fluid–structure interaction problems, i.e., particle sedimentations and vortex-induced vibrations of a circular cylinder are investigated. Good agreements between the present results and those in literature verify the capability and flexibility of IB–LBFS for simulating FSI problems.  相似文献   

14.
Zhao  Zhonglong  He  Lingchao 《Nonlinear dynamics》2022,109(2):1033-1046
Nonlinear Dynamics - In this paper, the solution in the form of Grammian of the Kadomtsev–Petviashvili I equation is employed to investigate a new type of multiple-lump solution. The bound...  相似文献   

15.
The strong interaction between turbulent structures arising from a plane mixing layer impinging on a circular cylinder is studied. This complex flow has been investigated by a set-up called dual-plane PIV that uses two 2D PIV (two-dimensional particle image velocimetry) planes acquired simultaneously. This approach allowed us to apply a 3D-POD (three-dimensional proper orthogonal decomposition) treatment. The first POD modes show the main footprint of the flow configuration, which comprises oblique structures associated with the action of the mixing layer on the near wake. The present study suggests, by analogy, that this phenomenon behaves like the dislocation observed in uniform wake flows.
C. BraudEmail:
  相似文献   

16.
The aim of this work is to determine the optimal design of two acoustic test chambers using systems of optimization by means of finite elements. In this way, we have modelled a set of tests composed of a source chamber and a receiving chamber according to the basic requirements of the standard rule. The constructive element whose acoustical behaviour is being evaluated is placed between both chambers. Applying the finite element method (FEM), a two-dimensional coupled finite element model with fluid-structure interaction has been made, using finite elements of the fluid-type both for the air and fluid-structure interface, and finite elements of solid-type with its elastic properties for a multilayered wall. The geometry of the chambers has been parameterized as design variables (DVs) and an objective function has been defined from the absolute value of the difference between the transmission loss (TL) values of the laboratory test and the TL of the numerical simulation in order to minimize it. To find an optimal design of the geometry of the acoustic chamber, a new cascade optimization procedure has been successfully developed. Finally, the numerical simulation results are compared with the acoustic laboratory results, and conclusions are exposed.  相似文献   

17.
Dynamics of cavitation–structure interaction   总被引:1,自引:1,他引:0  
Cavitation–structure interaction has become one of the major issues for most engineering applications. The present work reviews recent progress made toward developing experimental and numerical investigation for unsteady turbulent cavitating flow and cavitation–structure interaction. The goal of our overall efforts is to(1) summarize the progress made in the experimental and numerical modeling and approaches for unsteady cavitating flow and cavitation–structure interaction,(2) discuss the global multiphase structures for different cavitation regimes, with special emphasis on the unsteady development of cloud cavitation and corresponding cavitating flow-induced vibrations,with a high-speed visualization system and a structural vibration measurement system, as well as a simultaneous sampling system,(3) improve the understanding of the hydroelastic response in cavitating flows via combined physical and numerical analysis, with particular emphasis on the interaction between unsteady cavitation development and structural deformations. Issues including unsteady cavitating flow structures and cavitation–structure interaction mechanism are discussed.  相似文献   

18.
Ma  Guoli  Zhao  Jianbo  Zhou  Qin  Biswas  Anjan  Liu  Wenjun 《Nonlinear dynamics》2021,106(3):2479-2484
Nonlinear Dynamics - Optical fiber communication has developed rapidly because of the needs of the information age. Here, the variable coefficients fifth-order nonlinear Schrödinger equation...  相似文献   

19.
We investigate the interaction between a viscoelastic Oldroyd-B fluid and an elastic structure via simulations applying an implicit partitioned coupling algorithm. Simulations are done for a flow through a channel with a flexible wall and a lid-driven cavity flow with flexible bottom. In addition, we make use of a mass–spring–dashpot prototype model to study the dynamic interaction problem. Both the simulation results and the analysis of the prototype model show that there are obvious differences in the fluid–structure interaction if the fluids are viscoelastic instead of purely viscous. These differences appear in the deformation of the solid at stationary state and in the equilibrium position, amplitude, frequency as well as phase shift of the oscillation. Moreover, we investigate the influence of numerical and physical parameters on the implicit partitioned coupling algorithm for simulation of viscoelastic fluid–structure interaction problems.  相似文献   

20.
Thoracoabdominal aneurysm (TA) is a pathology that involves the enlargement of the aortic diameter in the inferior descending thoracic aorta and has risk factors including aortic dissection, aortitis or connective tissue disorders. Abnormal flow patterns and haemodynamic stress on the diseased aortic wall are thought to play an important role in the development of this pathology and the internal wall stress has proved to be more reliable as a predictor of rupture than the maximum diameter for abdominal aortic aneurysms; but this assumption has not been validated yet for aneurysms involving the thoracic aorta. In the present study, three patients with TAs of different maximum diameters were scanned using magnetic resonance imaging (MRI) techniques. Realistic models of the aneurysms were reconstructed from the in vivo MRI data acquired from the patients, and subject-specific flow conditions were applied as boundary conditions. The wall and thrombus were modelled as hyperelastic materials and their properties were derived from the literature. A normal descending aorta was also simulated to provide data for comparison. Fully coupled fluid–solid interaction (FSI) simulations as well as solid static simulations were performed using ADINA 8.2. The results show that the wall stress distribution and its magnitude are strongly dependent on the 3-D shape of the aneurysm and the distribution of thrombus. Maximum wall stresses in all TA models are higher than in the normal aorta, and values of maximum wall stress are not directly related to the maximum aneurysm diameter. Comparisons between the FSI and solid static simulation results showed no significant difference in maximum wall stress, supporting those previous studies which found that FSI simulations were not necessary for wall stress prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号