首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 446 毫秒
1.
In terms of Green’s functions, a theory is developed describing the resonant magnetooptical Kerr effect in light scattering by a linear probe that is parallel to the surface of a magnet and placed at a subwavelength distance from it. The probe is supposed to be a metal nanowire supporting long-lived surface plasmons and forming the near field of the “probe + image” complex. The resonant interaction between the probe and the sample is taken into account within a self-consistent approximation of multiple-scattering theory, and the magnetooptical interaction is included in the linear approximation in magnetization. The problem of scanning near-field magnetooptical microscopy with a linear probe is solved analytically in the case where the magnetization is parallel to both the magnet surface and the plane of incidence of light (longitudinal magnetooptical Kerr effect). The polarization, spectral, and angular characteristics of scattered light modulated by magnetization are discussed. It is shown that the magnetooptical modulation of the scattered light intensity is significantly enhanced when surface plasmons are resonantly excited in the nanowire.  相似文献   

2.
An internal reflection mode is introduced for scanning near-field optical microscopy (SNOM) with the tetrahedral tip. A beam of light is coupled into the tip and the light specularly reflected out of the tip is detected as a photosignal for SNOM. An auxiliary STM mode is used to control the distance during the scanning process and to record the topography of the sample simultaneously with the SNOM image. Images were obtained of different metallic samples which show a contrast in the order of 10% of the total reflected photosignal. In images of metallic samples an inverted contrast is consistently obtained compared to images previously obtained of comparable samples in a transmission mode. The contrast shows a pronounced dependence on the polarization of the incident beam with respect to the orientation of the edges of the tip. In the case of gold surfaces, the photosignal as a function of distance between the tip and the surface shows a pronounced peak in the near-field range of 0–20 nm which is tentatively attributed to the excitation of surface plasmons on the gold surface. The pronounced near-field effects and the strong contrast in the near-field images and the resolution well below 50 nm are an indication of a highly efficient coupling of the incident beam to a local excitation of the tip apex which is essential for the function of the tip as a probe for SNOM. Received: 17 May 1999 / Accepted: 18 May 1999 / Published online: 21 October 1999  相似文献   

3.
An analytical theory of scanning near-field magnetooptical microscopy is developed. The theory is based on the elastic scattering of light by small, resonantly polarizable particles, which are used to scan the plane surface of a nonuniformly magnetized medium. The effective polarizability of the particles is calculated with the effect of dynamic “image forces” taken into account in all orders of perturbation theory with respect to the interaction of the particle with a demagnetized ferromagnet, and the magnetooptical perturbation is calculated to first order in the magnetization. The major contributions to the magnetooptical light scattering for a ferromagnetic structure magnetized perpendicular to the surface are found, including a quasistatic approximation for the near-field particle-magnet interaction. The optical size resolution of a magnetic (dielectric) inhomogeneity is estimated. Zh. Tekh. Fiz. 68, 86–91 (July 1998)  相似文献   

4.
Numerical simulation of photon scanning tunneling microscopy is presented to study the near-field distribution in the vicinity a dielectric surface with one-dimensional sub-wavelength structures. Multiple scattering between the probe tip and the sample has been taken into account implicitly by matching electromagnetic boundary conditions at interfaces. The near-field intensity in transmission mode through two ridges on surface has been modeled in order to analyze the resolution of the system. The effects on the signal by the sample-tip coupling, the polarization of the incident light, and the angle of incidence are investigated. We find that the capability to recognize the feature will be improved when the tip–object interaction is strong.  相似文献   

5.
The images of magnetic and nonmagnetic nanoparticles obtained by scanning near-field microscopy in the photon collection mode are numerically simulated. A theoretical approach that uses tensor electrodynamic Green’s functions to find the optical near field in a given observation scheme is considered. Typicalimages of nanoparticles with various shapes are obtained by numerical simulation. Subject to boundary conditions, the plane of polarization is shown to change at topographic features (edges and angles) of objects studied. This makes the observation of the magnetic structure of a nanoparticle with a magnetooptic method difficult. The near-field study of the magnetization distribution in homogeneous thin films appears to be more effective, since the rotation of plane of polarization is associated primarily with the magnetic properties of the sample in this case.  相似文献   

6.
本文结合近场扫描结构和纳米线-微光纤耦合技术,提出了一种基于硫化镉纳米线/锥形微光纤探针结构的被动近场光学扫描成像系统.该系统采用被动式纳米探针,保留了纳米探针对样品表面反射光的强约束优势.其理论收集效率为4.65‰,相比于传统的金属镀膜近场探针收集效率提高了一个数量级,可有效地提高扫描探针对样品形貌信息的检测能力;而后通过硫化镉纳米线与微光纤之间高效的倏逝场耦合,将检测的光强信号传输到远场进行光电探测,最终实现对目标样品形貌的分析成像,其样品宽度测量误差在7.28%以内.该系统不需要外部激发光路,利用显微镜自身光源进行远场照明,被动扫描探针仅作为样品表面反射光的被动收集系统.本文基于半导体纳米线/锥形微光纤探针的被动式近场光学扫描成像方案,可有效地降低探针的制备难度和目标光场的检测难度,简化扫描成像的结构,为近场光学扫描显微系统之后的发展提供新的思路.  相似文献   

7.
本文结合近场扫描结构和纳米线-微光纤耦合技术,提出了一种基于硫化镉纳米线/锥形微光纤探针结构的被动近场光学扫描成像系统.该系统采用被动式纳米探针,保留了纳米探针对样品表面反射光的强约束优势.其理论收集效率为4.65‰,相比于传统的金属镀膜近场探针收集效率提高了一个数量级,可有效地提高扫描探针对样品形貌信息的检测能力;而后通过硫化镉纳米线与微光纤之间高效的倏逝场耦合,将检测的光强信号传输到远场进行光电探测,最终实现对目标样品形貌的分析成像,其样品宽度测量误差在7.28%以内.该系统不需要外部激发光路,利用显微镜自身光源进行远场照明,被动扫描探针仅作为样品表面反射光的被动收集系统.本文基于半导体纳米线/锥形微光纤探针的被动式近场光学扫描成像方案,可有效地降低探针的制备难度和目标光场的检测难度,简化扫描成像的结构,为近场光学扫描显微系统之后的发展提供新的思路.  相似文献   

8.
A theory of elastic light scattering by a small resonantly polarizing particle located near a flat surface of a magnetic medium has been developed. The effective polarizability of the particle was calculated self-consistently taking account of the dynamic “image forces” in all orders of perturbation theory in the interaction of the particle with the demagnetized ferromagnet, and the magneto-optic perturbation was determined to first order in the magnetization. In the case of a ferromagnet magnetized perpendicular to the surface, the light conversion factors and the magneto-optic corrections to the transverse cross sections of all processes in which the scattering of light by a particle and the polar magneto-optic Kerr effect are elementary events, have been calculated. The results, including an analysis of the near-field contribution to light scattering, comprise the physical foundation for constructing a theory of near-field magneto-optic spectroscopy of ferromagnets and magnetic structures. Fiz. Tverd. Tela (St. Petersburg) 39, 560–567 (March 1997)  相似文献   

9.
The magnetic properties of CaF2/Co/CaF2(110)/Si(001) heterostructures fabricated by molecular-beam epitaxy and having a corrugated CaF2 buffer surface were studied. The optical and magneto-optical properties of these structures reflect the C 2v symmetry of the corrugated structure surface. The studies of hysteresis loops using the longitudinal and transverse magneto-optical Kerr effects under oblique light incidence and of magneto-optical phenomena under near-normal light incidence demonstrate that the corrugated structure surface leads to optical and magneto-optical anisotropies. The magnetization of such structures occurs via coherent magnetization rotation over a wide magnetic-field range. The magnetic anisotropy of these structures is described using a Gaussian distribution of easy axes of magnetization in cobalt granules about the direction parallel to the groove direction. The asymmetry of hysteresis loops of the rotation of the plane of polarization detected under oblique and normal light incidence is shown to be related to the contributions to the effective film permittivity that are quadratic in the magnetic moment.  相似文献   

10.
Light scattering by a small protrusion on a metal surface is analyzed within the framework of perturbation theory. Upon normal incidence of a linearly polarized monochromatic wave, slight deviations of the protrusion’s shape from a circularly symmetric one lead to the formation of optical vortices in the near-field region due to resonant excitation of circular surface plasmons. This agrees with the results of scanning near-field optical microscopy experiments revealing distinct spiral patterns in the in-plane near-field intensity distribution for metallized nanostructured polymer substrates.  相似文献   

11.
Procedures based on the Yeh’s 4 × 4 matrix formalism for the treatment of the electromagnetic interactions in multilayers at transversal magnetization and at an arbitrary angle of incidence are described. With the restriction to the magneto-optical effects linear in the magnetization the characteristic matrix for magnetic layer is derived. The reflection and transmission coefficients are obtained in the case of magnetic ultrathin film on substrate. The magneto-optical thin film waveguides at transversal magnetization are analysed in details and the dispersion relations for guided modes in a single layer, a bilayer, a sandwich and the approach to expand this way for waveguiding conditions in multilayers are presented. Work partially sponsored by Grant Agency of the Czech Republic, reg. No. 202/98/0235 and Ministry of Education in the frame of KONTAKT program, reg. No. ME 175/1998.  相似文献   

12.
We have developed a UHV system for in situ studies of magnetic domains and magnetization reversal of thin films in the presence of external magnetic fields and at variable temperature. The system comprises a setup for magneto-optical Kerr effect measurements of magnetization curves, a Kerr-microscope for far-field magnetic-domain imaging, and a magneto-optical scanning near-field microscope in combination with a Sagnac interferometer (Sagnac-SNOM) for high-resolution imaging on a sub-μm scale. All components have successfully been tested, and the feasibility of studying ultrathin films has been demonstrated.  相似文献   

13.
Additional information about the magnetization distribution in magnetic films is obtained with a 3D-polarimetry set-up. A pilot experiment was performed with the neutron polarization aligned perpendicular to the surface of a Fe-film in a magnetic field parallel to its surface. The Larmor-precession in the magnetic field between two current sheets was used to adjust the neutron polarization perpendicular to the sample surface. This new polarization-magnetization configuration was probed with a Fe-film in specular and off-specular scattering. The off-specular scattering is created by the magnetic domain structure of the Fe-film in remanence. The results of specular and off-specular scattering are reproduced by calculations for the configuration of the incoming neutron polarization parallel to the sample surface and the magnetic field and for the configuration of the incoming neutron polarization perpendicular to the sample surface and the magnetic field.  相似文献   

14.
Magnetic microscopies developed to date sense or utilize stray magnetic fields, magneto-optical effects, interactions with electron beams, and so on, while a novel magnetic microscopy presented in this paper detects a strain induced by an external magnetic field using a scanning probe microscope (SPM). As the strains involve factors depending on the magnetization of each domain, we can observe the magnetic domain structure by detecting the strains. SPMs that have high sensitivity to surface displacements caused by strains enable us to detect small strains and provide high-resolution magnetic images. PACS 61.16.Ch; 85.70.Ge; 75.80.+q; 75.60.Ch  相似文献   

15.
Heat-assisted magnetic recording (HAMR) is promising for achieving more than 1 Tb/inch2 recording density. A near-field transducer (NFT), which forms a hot spot of 10–100 nm in diameter on a recording medium, is necessary in HAMR. In this study, localized surface plasmons generated by a metal nano-dot in a novel device for a heat source of heat-assisted magnetic recording were analyzed using a simple model in which a metal hemisphere was formed on a GaAs substrate and a quasi-electrostatic approximation. The scattering and absorption efficiencies as well as the enhancement factor were investigated for several kinds of metal. As a result, their dependence on the wavelength and the polarization direction of the incident light was clarified.  相似文献   

16.
H.W. Kihm  D.S. Kim 《Optics Communications》2009,282(12):2442-15731
In this paper, we theoretically and experimentally demonstrate that metal coated apertured probes are efficient near-field probes on surfaces with high reflectivity for the scattering as well as for the collection mode near-field scanning optical microscopy (NSOM). We show that a blunt apertured metal coated tip is very effective in suppressing image dipoles which affect strongly the signals scattered from frequently used sharp metal tips or gold nanoparticle attached probes. By using a simultaneous collection and scattering mode (dual mode) NSOM we measure the near-field images of surface plasmon polariton (SPP) launched from a slit. The collection mode measures propagating SPP along lateral distance in a long scan range with high signal-to-noise ratio, and the scattering mode measures the polarization resolved near-field of SPP. Comparisons of the measured data obtained in the dual mode enable to easily characterize SPP and to separate the measured near-field into the propagating SPP and the directly transmitted light.  相似文献   

17.
Two-dimensional optics with surface plasmons was realized by the use of topographically structured dielectric polymer coatings. Triangles of polymethylmetacrylate (PMMA) with lateral dimensions of some tens of micrometers on top of a silver layer act as two-dimensional prisms for surface plasmons. Refraction and internal reflection of plasmons were investigated by scanning near-field optical microscopy. The change in propagation direction can be explained by Snell's law when taking an effective refractive index for plasmons into account. Furthermore, intensity modulations in the PMMA elements and in the transmitted plasmon beam were observed.  相似文献   

18.
Magneto-optical polarization spectroscopy with soft X-rays   总被引:1,自引:0,他引:1  
X-ray magneto-optical polarization spectroscopy is a relatively new ellipsometric technique with which the complete polarization state of X-ray radiation after its interaction with magnetic matter can be measured. This comprises rotation and ellipticity, which fully quantify the lights polarization. Employing this technique, the complete magneto-optical constants in the X-ray regime can directly be obtained, in contrast to the more commonly used intensity-only measurements. The Faraday and magneto-optical Kerr effects, being odd with respect to magnetization reversal, can be used for the examination of ferromagnetic (FM) materials. This we demonstrate here with Faraday and Kerr rotation and ellipticity spectra, measured at the 2p edges of Fe, Co, and Ni. The Voigt effect and magnetic linear dichroism (XMLD), which are even with respect to magnetization reversal, are applied to probe both FM and antiferromagnetic (AFM) materials. Using a new XMLD-reflection spectroscopy we present results obtained on technologically important buried AFM NiO layers. PACS 78.20.Ls; 78.70.Dm; 75.70.-i  相似文献   

19.
Surface plasmons at the metal–dielectric interface have emerged as an important candidate to propagate and localize light at subwavelength scales. By tailoring the geometry and arrangement of metallic nanoarchitectures, propagating and localized surface plasmons can be obtained. In this brief perspective, we discuss: (1) how surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs) can be optically excited in metallic nanoarchitectures by employing a variety of optical microscopy methods; (2) how SPPs and LSPs in plasmonic nanowires can be utilized for subwavelength polarization optics and single-molecule surface-enhanced Raman scattering (SERS) on a photonic chip; and (3) how individual plasmonic nanowire can be optically manipulated using optical trapping methods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号