首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Nonlinear Dynamics - The nonlinear dynamic behavior of a resonant MEMS arch microbeam actuated by fringing electric actuation is investigated in this paper. The arch microbeam is loaded with DC and...  相似文献   

2.
Nonlinear modal interactions have recently become the focus of intense research in micro-resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. Understanding and controlling nonlinear coupling between vibrational modes is critical for the development of advanced micromechanical devices. This article aims to theoretically investigate the influence of antisymmetry mode on nonlinear dynamic characteristics of electrically actuated microbeam via considering nonlinear modal interactions. Under higher-order modes excitation, two nonlinear coupled flexural modes to describe microbeam-based resonators are obtained by using Hamilton’s principle and Galerkin method. Then, the Method of Multiple Scales is applied to determine the response and stability of the system for small amplitude vibration. Through Hopf bifurcation analysis, the bifurcation sets for antisymmetry mode vibration are theoretically derived, and the mechanism of energy transfer between antisymmetry mode and symmetry mode is detailed studied. The pseudo-trajectory processing method is introduced to investigate the influence of external drive on amplitude and bifurcation behavior. Results show that nonlinear modal interactions can transit vibration energy from one mode to nearby mode. In what follows, an effective way is proposed to suppress midpoint displacement of the microbeam and to reduce the possibility of large deflection. The quantitative relationship between vibrational modes is also obtained. The displacement of one mode can be predicted by detecting another mode, which shows great potential of developing parameter design in MEMS. Finally, numerical simulations are provided to illustrate the effectiveness of the theoretical results.  相似文献   

3.
In this paper, a study for positive position feedback controller is presented that is used to suppress the vibration amplitude of a nonlinear dynamic model at primary resonance and the presence of 1:1 internal resonance. We obtained an approximate solution by applying the multiple scales method. Then we conducted bifurcation analyses for open and closed loop systems. The stability of the system is investigated by applying the frequency-response equations. The effects of the different controller parameters on the behavior of the main system have been studied. Optimum working conditions of the system were extracted to be used in the design of such systems. Finally, numerical simulations are performed to demonstrate and validate the control law. We found that all predictions from analytical solutions are in good agreement with the numerical simulation. A comparison with the available published work is included at the end of the work.  相似文献   

4.
In this paper, an electromechanical coupled nonlinear dynamic equation of a microbeam under an electrostatic force is presented. Using the nonlinear dynamic equations and perturbation method, we investigated nonlinear free vibrations, forced responses far from and near to natural frequency, respectively. Nonlinear natural frequencies and vibrating amplitudes of the electromechanical coupled microbeam are dependent on the mechanical and electric parameters. Compared with linear forced responses, the obvious shift of the mean dynamic response occurs. Under certain condition, the jump phenomenon will occur. The studies can be used to design parameters of the microbeam and remove undesirable dynamic behavior such as jump phenomenon, etc.  相似文献   

5.
Nonlinear dynamics of elastic structures with two-mode interactions have been extensively studied in the literature. In this work, nonlinear forced response of elastic structures with essential inertial nonlinearities undergoing three-mode interactions is studied. More specifically, a three-beam structural system with attached mass is considered, and its multidegree-of-freedom discretized model for the structure undergoing planar motions is carefully studied. Linear modal characteristics of the structure with uniform beams depend on the length ratios of the three beams, the mass of the particle relative to that of the structure, and the location of the mass particle along the beams. The discretized model is studied for both external and parametric resonances for parameter combinations resulting in three-mode interactions. For the external excitation case, focus is on the system with 1:2:3 internal resonances with the external excitation frequency near the middle natural frequency. For the case of the structure with 1:2:5 internal resonances, the problem involving simultaneous principal parametric resonance of the middle mode and a combination resonance between the lowest and the highest modal frequencies is investigated. This case requires a higher-order approximation in the method of multiple time scales. For both cases, equilibrium and bifurcating solutions of the slow-flow equations are studied in detail. Many pitchfork, saddle-node, and Hopf bifurcations appear in the amplitude response of the three-beam structure, thus resulting in complex multimode responses in different parameter regions.  相似文献   

6.
Binary waveguide arrays are linear arrays of optical waveguides with binary alternation of parameters, and have been of recent interest. They can be modeled by systems of nonlinear ODEs with forms related to the discrete nonlinear Schrödinger equation. Such equations can also arise in semi-classical molecular models of polymers with excitable states in each monomer, and coupling between these.An important class of solutions arises from an initially highly localized signal, such as input to a single element of the array. Simulations show that for a wide array of parameter values and of such initial data, a pulse is generated that travels approximately as a traveling wave. After a suitable phase shift in the variables, this pulse quickly develops a slow spatial variation, leading to a long-wave approximation by a system of coupled third order PDEs; one each for nodes of even and odd indices.This system of PDEs is presented, and verified to quite accurately reproduce the pulse propagation seen in the ODE system; further there is often a strong tendency for the behavior of the two PDE components to converge, with a corresponding convergence of the even and odd index parts of the ODE system solution. The PDE model gives some indication of why this occurs.  相似文献   

7.
何贵勤  曹登庆  陈帅  黄文虎 《力学学报》2021,53(8):2312-2322
现代柔性航天器通常安装有大型太阳翼为其在轨运行提供所需动力. 航天器入轨后太阳翼展开并锁定成为铰链连接多板结构, 此类结构质量轻、跨度大、刚度低的特点使其低频振动和非线性振动问题越来越凸显. 分析和处理此类结构出现的复杂振动问题的关键在于建立系统精确的非线性动力学模型. 为此, 本文提出铰链连接多板结构解析全局模态的提取方法, 获取太阳翼的固有频率和解析函数表征的全局模态. 提出可变刚度的扭转弹簧等效模型, 考虑铰链非线性刚度及摩擦力矩等因素, 通过全局模态离散得到系统的低维高精度非线性动力学模型, 研究了太阳翼在周期激励作用下的非线性特性. 开展太阳翼地面振动实验研究, 采用锤击法获取系统模态, 利用振动台施加正弦扫频激励, 将物理实验结果与理论结果进行对比, 从而验证全局模态动力学建模方法的合理性与准确性. 结果表明, 铰链刚度等结构参数对系统固有特性的影响较大, 铰链的存在会使太阳翼的动态响应出现跳跃等非线性现象. 全局模态动力学建模方法能很好地解决多板结构在非经典边界下解析全局模态求解的困难, 系统全局模态反映的是系统各个部件弹性振动的真实模态, 所建立的动力学模型具有低维高精度的特点, 对于复杂组合结构非线性动力学建模具有重要的参考价值.   相似文献   

8.
Viscoelastic phenomena widely exist in MEMS materials, which may have certain effects on quasi-static behaviors and transition mechanism of nonlinear jumping phenomena. The static and dynamic behaviors of a doubly clamped viscoelastic microbeam actuated by one sided electrode are investigated in detail, based on a modified couple stress theory. The governing equation of motion is introduced here, which is essentially nonlinear due to its midplane stretching effect and electrostatic force. Through quasi-static analysis, the equilibrium position, pull-in voltage and pull-in location of the system are obtained with differential quadrature method and finite element method. The equivalent geometric nonlinear parameter is presented to explain the influence of the scale effect on the pull-in location. Different from elastic material, there are two kinds of pull-in voltages called as instantaneous pull-in voltage and the durable pull-in voltage in viscoelastic system. Then, Galerkin discretization and the method of multiple scales are applied to determine the response and stability of the system for small vibration amplitude. A new perturbation method to deal with viscoelastic term is presented. Theoretical expressions about the parameter spaces of linear-like vibration, hardening-type vibration and softening-type vibration are then deduced. The influence of viscoelasticity and scale effect on nonlinear dynamic behavior is studied. Results show that the viscoelasticity can reduce the effective elastic modulus and make the system tend to softening-type vibration; the scale effect can increase effective elastic modulus and make the system tend to hardening-type vibration. And most of all, simulation results of case studies are used to realize parameter optimization. Then parameter conditions of linear-like vibration, which is desired for many applications, are obtained. In this paper, the results of multi-physical field coupling simulation are used to verify the theoretical analysis.  相似文献   

9.
In this paper,the nonlinear dynamic behavior of a string-beam coupled system subjected to external,parametric and tuned excitations is presented.The governing equations of motion are obtained for the nonlinear transverse vibrations of the string-beam coupled system which are described by a set of ordinary differential equations with two degrees of freedom.The case of 1:1 internal resonance between the modes of the beam and string,and the primary and combined resonance for the beam is considered.The method of multiple scales is utilized to analyze the nonlinear responses of the string-beam coupled system and obtain approximate solutions up to and including the second-order approximations.All resonance cases are extracted and investigated.Stability of the system is studied using frequency response equations and the phase-plane method.Numerical solutions are carried out and the results are presented graphically and discussed.The effects of the different parameters on both response and stability of the system are investigated.The reported results are compared to the available published work.  相似文献   

10.
In this paper, research on nonlinear dynamic behavior of a string-beam coupled system subjected to parametric and external excitations is presented. The governing equations of motion are obtained for the nonlinear transverse vibrations of the string-beam coupled system. The Galerkin's method is employed to simplify the governing equations to a set of ordinary differential equations with two degrees-of-freedom. The case of 1:2 internal resonance between the modes of the beam and string, principal parametric resonance for the beam, and primary resonance for the string is considered. The method of multiple scales is utilized to analyze the nonlinear responses of the string-beam coupled system. Based on the averaged equation obtained here, the techniques of phase portrait, waveform, and Poincare map are applied to analyze the periodic and chaotic motions. It is found from numerical simulations that there are obvious jumping phenomena in the resonant response–frequency curves. It is indicated from the phase portrait and Poincare map that period-4, period-2, and periodic solutions and chaotic motions occur in the transverse nonlinear vibrations of the string-beam coupled system under certain conditions. An erratum to this article is available at .  相似文献   

11.
L. Dai  L. Sun  C. Chen 《Nonlinear dynamics》2014,77(4):1677-1692
Microbeams are widely seen in micro-electro-mechanical systems and their engineering applications. An active control strategy based on the fuzzy sliding mode control is developed in this research for controlling and stabilizing the nonlinear vibrations of a micro-electro-mechanical beam. An Euler-Bernoulli beam with a fixed-fixed boundary is employed to represent the microbeam, and the geometric nonlinearity of the beam and loading nonlinearity from the electrostatic force are considered. The governing equation of the microbeam is established and transformed into a multi-dimensional dynamic system with the third-order Galerkin method. A stability analysis is provided to show the necessity of the derived multi-dimensional dynamic system, and a chaotic motion is discovered. Then, a control approach is proposed, including a control strategy and a two-phase control method. For describing the application of the control approach developed, control of a chaotic motion of the microbeam is presented. The effectiveness of the active control approach is demonstrated via controlling and stabilizing the nonlinear vibration of the microbeam.  相似文献   

12.
RLC串联电路与微梁耦合系统1:2内共振分析   总被引:1,自引:0,他引:1  
研究电阻电感电容串联电路与微梁耦合系统的非线性振动,应用拉格朗日-麦克斯韦方程,建立受静电激励RLC串联电路与微梁耦合系统的数学模型。根据非线性振动的多尺度法,得到了在内共振ω2≈2ω1的情况下的近似解,并进行数值计算,得到用椭圆函数表示的解析解。计算结果表明,在无阻尼情况下,振动和能量在两个态间相互转换,没有能量损失。  相似文献   

13.
In this work, the authors seek to develop an analytical framework to understand the influence of noise on an array of micro-scale oscillators with special attention to the phenomenon of intrinsic localized modes (ILMs). It was recently shown by one of the authors and co-workers (Dick et al. in Nonlinear Dyn. 54:13, 2008) that ILMs can be realized as nonlinear vibration modes. Building on this work, it is shown here that white noise excitation, by itself, is unable to produce ILMs in an array of coupled nonlinear oscillators. However, in the case of an array subjected to a combined deterministic and random excitation, the obtained numerical results indicate the existence of a threshold noise strength beyond which the ILM at one location in attenuated whilst the localization in strengthened at another location in the array. The numerical results further motivate the formulation of a general analytical framework wherein the Fokker–Planck equation is derived for a typical coupled oscillator cell of the array subjected to a combined white noise and deterministic excitation. With a set of approximations, the moment evolution equations are derived from the Fokker–Planck equation and they are numerically solved. These solutions indicate that once a localization event occurs in the array, a random excitation with noise strength above a threshold value contributes to the sustenance of the event. It is also observed that an excitation with a higher noise strength results in enhanced response amplitudes for oscillators in the center of the array. The efforts presented in this paper, in addition to providing an analytical framework for developing a fundamental understanding of the influence of white noise on the dynamics of coupled oscillator arrays, suggest that noise may be potentially used to manipulate the formation and persistence of ILMs in such arrays. Furthermore, the occurrence of enhanced response amplitudes due to an excitation with a high noise strength indicates that the framework may also be used to investigate stochastic resonance-type phenomena in coupled arrays of nonlinear oscillators including micro-scale oscillator arrays.  相似文献   

14.
During operation, a MEMS switch is activated by an applied voltage. This causes the switch, often a doped silicon microbeam, to be attracted toward (pulled-into) a substrate. The component–substrate contact completes a circuit and permits the flow of current. Calculations for the minimum voltage required to achieve quasi-static pull-in are well documented. But for these quasi-static pull-in voltages to be meaningful, the voltage would have to be increased gradually until the critical value Vpull-inV_{\mathrm{pull\mbox{-}in}} is reached and the switch closes. Of course, practical considerations might require the switch to cycle on and off quickly, i.e., dynamically. This is particularly true in the case of radio frequency (RF) MEMS switches. In this paper, a model is developed and used to consider the dynamic pull-in characteristics of a clamped-clamped microbeam. This model includes inertial effects, structural and air damping (squeeze-film damping), as well as the impact behavior of the microbeam with the substrate. Parameter combinations leading to various types of behavior (no pull-in, air-bounce, wall bounce, etc.) are clearly identified. In an attempt to ensure fast switch closure and limit bouncing, two new applied voltage profiles are considered.  相似文献   

15.
顾伟  张博  丁虎  陈立群 《力学学报》2020,52(4):1131-1142
在工程实际中,涡轮机叶片的转速在很多应用场景下不是一个定常值,比如发动机在启动、变速、停机等工况下,转子输入与输出功率失衡,伴随产生扭振,产生速度脉冲. 另外,由于服役环境、安装误差等因素会引起叶片在所难免的预变形. 本文主要研究预变形叶片,在变转速条件下的非线性动力学行为. 考虑叶片转速由一定常转速和一简谐变化的微小扰动叠加而成. 应用拉格朗日原理得到变转速叶片的动力学控制方程,并采用假设模态法将偏微分方程转为常微分方程,通过引入无量纲,使方程更具有一般性. 运用多尺度方法求解了该参激振动系统,得到了在 2:1 内共振情形下的平均方程,进而获得系统的稳态响应. 详细研究温度梯度、阻尼以及转速扰动幅值等系统参数对叶片动力学响应的影响规律,同时考察了立方项在 2:1 内共振下对方程的影响. 对原动力方程进行正向、反向扫频积分来观察其跳跃现象,并对解析解进行验证. 结果发现参数的变化对叶片均有不同程度影响,在 2:1 内共振下立方项对系统响应的影响很小,解析解与数值解吻合很好.   相似文献   

16.
在工程实际中,涡轮机叶片的转速在很多应用场景下不是一个定常值,比如发动机在启动、变速、停机等工况下,转子输入与输出功率失衡,伴随产生扭振,产生速度脉冲. 另外,由于服役环境、安装误差等因素会引起叶片在所难免的预变形. 本文主要研究预变形叶片,在变转速条件下的非线性动力学行为. 考虑叶片转速由一定常转速和一简谐变化的微小扰动叠加而成. 应用拉格朗日原理得到变转速叶片的动力学控制方程,并采用假设模态法将偏微分方程转为常微分方程,通过引入无量纲,使方程更具有一般性. 运用多尺度方法求解了该参激振动系统,得到了在 2:1 内共振情形下的平均方程,进而获得系统的稳态响应. 详细研究温度梯度、阻尼以及转速扰动幅值等系统参数对叶片动力学响应的影响规律,同时考察了立方项在 2:1 内共振下对方程的影响. 对原动力方程进行正向、反向扫频积分来观察其跳跃现象,并对解析解进行验证. 结果发现参数的变化对叶片均有不同程度影响,在 2:1 内共振下立方项对系统响应的影响很小,解析解与数值解吻合很好.  相似文献   

17.
In this paper, an analytical approximate solution is constructed for a rotor-AMB system that is subjected to primary resonance excitations at the presence of 1:1 internal resonance. We obtain an approximate solution applying the method of multiple scales, and then we conducted the system bifurcation analyses. The stability of the system is investigated applying Lyapunov’s first method. The effects of the different parameters on the system behavior are investigated. The analytical results showed that the rotor-AMB system exhibits a variety of nonlinear phenomena such as bifurcations, coexistence of multiple solutions, jump phenomenon, and sensitivity to initial conditions. Finally, the numerical simulations are performed to demonstrate and validate the accuracy of the approximate solutions. We found that all predictions from analytical solutions are in excellent agreement with the numerical integrations.  相似文献   

18.
We present modeling, simulation, and characterization for the dynamic response of clamped-clamped microbeams under mechanical shock. A Galerkin-based reduced-order model is utilized and its results are verified by comparing to finite-element results. The results indicate that the response of a microbeam to mechanical shock is inherently non-linear because of the dominating effect of mid-plane stretching. The effect of the shock pulse shape is investigated. It is concluded that the shape of the shock pulse can result in significant dynamic amplification in the response of the microbeam even in cases where the shock load is considered quasi-static.The combined effect of the electrostatic force and mechanical shock is investigated. The results show that this combined effect can lead to early instability in microelectromechanical systems (MEMS) devices through dynamic pull-in. This could explain some of the reported experimental evidences for the existence of strange modes of failure of MEMS devices under mechanical shock and impact. These failures are characterized by overlaps between moving microstructures and stationary electrodes, which cause electrical shorts. The shock-electrostatic interaction is shown to be promising to design smart MEMS switches triggered at predetermined level of shock and acceleration. Finally, the mechanical shock combined with the packaging effect of MEMS devices is analyzed. A single-degree-of-freedom model representing the motion of the package, which is mounted over a printed circuit board, coupled with the continuous beam model is utilized. Our results reveal that neglecting the effect of the package motion on the response of microbeams can overestimate or underestimate their response. It is concluded that a poor design of the package may result in severe amplification of the shock effect leading to a device failure.  相似文献   

19.
From the viewpoint of application of nonlinear dynamics, we report multifunctional operation in a single microelectromechanical system (MEMS) resonator. This paper addresses a reprogrammable logic-memory device that uses a nonlinear MEMS resonator with multi-states. In order to develop the reprogrammable logic-memory device, we discuss the nonlinear dynamics of the MEMS resonator with and without control input as logic and memory operations. Through the experiments and numerical simulations, we realize the reprogrammable logic function that consists of OR/AND gate by adjusting the excitation amplitude and the memory function by storing logic information in the single nonlinear MEMS resonator.  相似文献   

20.
Pellicano  F.  Mastroddi  F. 《Nonlinear dynamics》1997,14(4):335-355
The nonlinear dynamics of a simply supported beam resting on a nonlinear spring bed with cubic stiffness is analyzed. The continuous differential operator describing the mathematical model of the system is discretized through the classical Galerkin procedure and its nonlinear dynamic behavior is investigated using the method of Normal Forms. This model can be regarded as a simple system describing the oscillations of flexural structures vibrating on nonlinear supports and then it can be considered as a simple investigation for the analysis of more complex systems of the same type. Indeed, the possibility of the model to exhibit actually interesting nonlinear phenomena (primary, superharmonic, subharmonic and internal resonances) has been shown in a range of feasibility of the physical parameters. The singular perturbation approach is used to study both the free and the forced oscillations; specifically two parameter families of stationary solutions are obtained for the forced oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号