首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
吕建根  康厚军 《力学季刊》2016,37(3):572-580
本文研究桥梁工程中含弯曲刚度斜拉索的面内面外内共振问题.描述了工程中斜拉索变形的三种状态,考虑弯曲刚度、大变形及垂度等因素,忽略斜拉索纵向惯性力的影响,运用Hamilton变分原理建立了含弯曲刚度的斜拉索面内面外耦合偏微分控制方程,采用Galerkin方法对偏微分方程离散,并运用多尺度摄动方法进行了求解,获得了斜拉索可能存在的内共振模式,以工程中一根斜拉索为例,运用有限元法对其进行动力特性分析,列出了斜拉索前10阶面内面外振动频率,找出面内面外可能产生内共振的模态,分别研究了主共振条件下斜拉索面内和面外1:1、2:1内共振情形,获得了有意义的结论.  相似文献   

2.
A dynamic model for an inclined carbon ?ber reinforced polymer(CFRP)cable is established, and the linear and nonlinear dynamic behaviors are investigated in detail. The partial differential equations for both the in-plane and out-of-plane dynamics of the inclined CFRP cable are obtained by Hamilton's principle. The linear eigenvalues are explored theoretically. Then, the ordinary differential equations for analyzing the dynamic behaviors are obtained by the Galerkin integral and dimensionless treatments.The steady-state solutions of the nonlinear equations are obtained by the multiple scale method(MSM) and the Newton-Raphson method. The frequency-and force-response curves are used to investigate the dynamic behaviors of the inclined CFRP cable under simultaneous internal(between the lowest in-plane and out-of-plane modes) and external resonances, i.e., the primary resonances induced by the excitations of the in-plane mode,the out-of-plane mode, and both the in-plane mode and the out-of-plane mode, respectively. The effects of the key parameters, e.g., Young's modulus, the excitation amplitude,and the frequency on the dynamic behaviors, are discussed in detail. Some interesting phenomena and results are observed and concluded.  相似文献   

3.
Rain-wind-induced vibrations of a simple oscillator   总被引:1,自引:0,他引:1  
In this paper a relatively simple mechanical oscillator which may be used to study rain-wind-induced vibrations of stay cables of cable-stayed bridges is considered. In recent publications, mention is made of vibrations of (inclined) stay cables which are excited by a wind field containing rain drops. The rain drops that hit the cables generate a rivulet on the surface of the cable. The presence of flowing water on the cable changes the cross section of the cable experienced by the wind field. A symmetric flow pattern around the cable with circular cross section may become asymmetric due to the presence of the rivulet and may consequently induce a lift force as a mechanism for vibration. During the motion of the cable the position of rivulet(s) may vary as the motion of the cable induces an additional varying aerodynamic force perpendicular to the direction of the wind field. It seems not too easy to model this phenomenon, several author state that there is no model available yet.The idea to model this problem is to consider a horizontal cylinder supported by springs in such a way that only one degree of freedom, i.e. vertical vibration is possible. We consider a ridge on the surface of the cylinder parallel to the axis of the cylinder. Additionally, let the cylinder with ridge be able to oscillate, with small amplitude, around the axis such that the oscillations are excited by an external force.It may be clear that the small amplitude oscillations of the cylinder and hence of the ridge induce a varying lift and drag force. In this approach it is assumed that the motion of the ridge models the dynamics of the rivulet(s) on the cable. By using a quasi-steady approach to model the aerodynamic forces, one arrives at a non-linear second-order equation displaying three different kinds of excitation mechanisms: self-excitation, parametric excitation and ordinary forcing. The first results of the analysis of the equation of motion show that even in a linear approximation for certain values of the parameters involved, stable periodic motions are possible. In the relevant cases where in linear approximation unstable periodic motions are found, results of an analysis of the non-linear equation are presented.  相似文献   

4.
绳索系统的建模、动力学和控制   总被引:18,自引:0,他引:18  
金栋平  文浩  胡海岩 《力学进展》2004,34(3):304-313
绳索系统具有无限自由度,当计入非线性因素的作用时,其面内和面外的振动相互耦合,呈现非常丰富的非线性动力学行为.另外,绳索系统经常工作在风、流体、微重力、电磁力等作用下,进一步加剧了其动力学的复杂性.绳索系统的动力学现象引起了工程界和力学界的关注.本文对绳索在重要工程系统中的应用及相应的动力学现象进行概述,给出了柔索的动力学建模过程,对绳索系统的动力学和控制研究进行了总结,并指出了值得进一步关注的若干问题.   相似文献   

5.
The nonlinear oscillations of a controlled suspended elastic cable under in-plane excitation are considered. Active control realized by longitudinal displacement of one support is introduced in order to reduce the transverse in-plane and out-of-plane vibrations. Linear and quadratic enhanced velocity feedback control laws are chosen and their effects on the cable motion are investigated using a two degree-of-freedom model. Perturbation analysis is performed to determine the in-plane steady-state solutions and their stability under an out-of-plane disturbance. The analysis is extended to the bifurcated two-mode steady-state oscillations in the region of parametric excitation. The dependence of the control effectiveness on the system parameters is investigated in the case of the first symmetric mode and the range of oscillation amplitudes in which the proposed control ensures a dissipation of energy is determined. Although control based only on in-plane response quantities is effective in reducing oscillations with a prevailing in-plane component, addition of out-of-plane measures has to be considered when the motion is characterized by two comparable components.  相似文献   

6.
The first-order non-linear interactions between the pipe structure and the flowing fluid are considered to formulate the governing equations of motion for the in-plane vibration of a circular-arc pipe containing flowing fluid. The forces and moments induced in a pipe element by the flowing fluid are analyzed as functions of the instantaneous local curvature of the pipe. The flow field is assumed to be one-dimensional, incompressible and of uniform flow, and to remain independent of pipe motion. For a fixed-end circular-arc pipe with arbitrary arc angle, the non-linear governing equations are solved by the method of multiple scales in conjunction with the Bubnov-Galerkin method. The non-linear solutions indicate that the vibrational behavior of the system can differ substantially from that predicted by a linear analysis.  相似文献   

7.
斜拉索非线性振动跳跃过程试验研究   总被引:1,自引:0,他引:1  
斜拉索振动中的“跳跃”现象是一种典型的非线性行为。虽然,在以往的理论和实验研究中已发现该现象,但是,却没有直接观测到其发生的过程。为探究斜拉索“跳跃”过程及该过程中的非线性动力行为,根据动力相似理论的弹性力-重力相似律设计了斜拉索实验模型。通过在扫频试验中使激励频率恰好等于“跳跃”的临界频率,直接观测到了斜拉索自发发生的“跳跃”过程。对空间运动形态变化规律和特征的研究发现:斜拉索“跳跃”过程空间运动不仅仅是振幅突然改变,而是经历了面内外振幅急剧减小、面内外振动交替占主导及“气圈”运动逆顺时针交替变换3个阶段。  相似文献   

8.
斜拉桥中拉索承受着多种端部激励,可激发大幅空间振动.以斜拉索为对象,探究不同端部激励间相位差对其非线性振动的影响.首先,推导斜拉索无量纲离散控制方程,引入考虑相位的三向端部激励得到一般化模型;然后,针对拉索下端存在的纵桥向、竖向和横桥向激励的两两组合,受大幅或小幅激励,及其在主共振区或主参数共振区几组因素,共计12种工况,采用数值分析法分别研究了各工况下不同激励相位差时的斜拉索稳态响应.研究发现:激励相位差能加剧与激励频率相近的面内、外模态振动;在任意端部激励组合下,激励相位差不仅可使斜拉索非线性振动出现定量变化,还可改变内共振的表现形式.面内、外激励组合下,相位差对拉索响应幅值的影响以π为周期变化,且当相位差趋于π/2 + kπ (k = 0, 1, 2…)时影响最为突出;而面内激励组合下,以2π为变化周期,当相位差为π + 2kπ (k = 0, 1, 2, …)时其对稳态幅值的影响最显著.其原因是:面外激励关于拉索所在的竖直面对称,故其本质上以π为周期;而面内激励无此对称性,仍以2π为周期.因此,有无面外激励参与决定了激励间相位差对斜拉索响应的影响规律.  相似文献   

9.
The non-linear interaction of the in-plane and out-of-plane motions of a suspended cable in the neighbourhood of 2:1 internal resonance under random loading is studied. The random loading acts externally on the in-plane mode, while the out-of-plane mode is non-linearly coupled with the in-plane mode. Any non-trivial motion of the out-of-plane mode is mainly due to this non-linear coupling, which becomes significant in the neighbourhood of internal resonance. The response statistics are estimated by employing the Fokker-Planck equation together with Gaussian and non-Gaussian closures. Monte-Carlo simulation is also used for numerical verification. Away from the internal resonance condition, the response is governed by the inplane motion, and the non-Gaussian closure solution is found to be in good agreement with numerical simulation results. The stochastic bifurcation of the out-of-plane mode is predicted by Gaussian and non-Gaussian closures, and by Monte-Carlo simulation. The non-Gaussian closure can only predict bounded solutions within a limited region. The on-off intermittency of the second mode is observed in the Monte-Carlo simulation over a small range of excitation level. The influence on response statistics of excitation level and cable parameters, such as internal detuning, damping ratios, and sag-to-span ratio, is reported.  相似文献   

10.
Rain–wind induced vibration of cables in cable-stayed bridges is a worldwide problem of great concern. The effect of the motion of water rivulets on the instability of stay cables has been recognized as one of the mechanisms of this complex phenomenon. In order to investigate how the motion of rivulets affects the unstable vibration of cables without considering the effects of axial flow and axial vortex, a real three-dimensional cable was modeled as a two-dimensional circular cylinder, around which an attachment representing the rivulet can move. This could also be regarded as a new kind of two-dimensional 2-dof dynamic system. This paper studies the aerodynamic instability of the system theoretically and experimentally. Equations governing the motions of the cylinder and the attachment are first established. The Lyapunov stability criterion is applied to the equations of motion to derive the criterion for the unstable balance angle of the attachment. Moreover, a new two-dimensional 2-dof cable model system with a movable attachment is designed and tested in a wind tunnel. Parametric studies are carried out to investigate the effects of major factors such as wind speed, frequency and damping of the dynamic system on the unstable balance angle of the rivulet attachment. Theoretical and experimental results match well. These results may be valuable in elucidating the mechanism of rain–wind induced vibration of stay cables.  相似文献   

11.
In this paper we study the effect of extensibility on the vibration characteristics of a spatial buckled rod (elastica) under edge thrust and supported by spherical hinges at the ends. The nonlinear equations of motion are written within the framework of director theory. The elastica in question admits only plane deformations. There are three types of vibration modes, in-plane, symmetric out-of-plane, and anti-symmetric (twisting) out-of-plane. Most of the natural frequencies decrease as the end shortening increases, except the first in-plane mode without a nodal point. This mode is inadmissible in an inextensible elastica. This may be considered a flaw in the inextensible elastica model when dynamic behavior is concerned. In the limit case when the static deformation is small, a small-deformation theory taking into account axial extensibility is formulated and compared with the elastica model. The natural frequency of the first in-plane mode derived from small-deformation theory agrees very well with the one calculated from the extensible elastica model in the post-buckling range. However, all others are found to be independent of end shortening. This obviously unreasonable result is due to the limitation of small-deformation theory.  相似文献   

12.
Fluid Flow-Induced Nonlinear Vibration of Suspended Cables   总被引:2,自引:0,他引:2  
Chang  W. K.  Pilipchuk  V.  Ibrahim  R. A. 《Nonlinear dynamics》1997,14(4):377-406
The nonlinear interaction of the first two in-plane modes of a suspended cable with a moving fluid along the plane of the cable is studied. The governing equations of motion for two-mode interaction are derived on the basis of a general continuum model. The interaction causes the modal differential equations of the cable to be non-self-adjoint. As the flow speed increases above a certain critical value, the cable experiences oscillatory motion similar to the flutter of aeroelastic structures. A co-ordinate transformation in terms of the transverse and stretching motions of the cable is introduced to reduce the two nonlinearly coupled differential equations into a linear ordinary differential equation governing the stretching motion, and a strongly nonlinear differential equation for the transverse motion. For small values of the gravity-to-stiffness ratio the dynamics of the cable is examined using a two-time-scale approach. Numerical integration of the modal equations shows that the cable experiences stretching oscillations only when the flow speed exceeds a certain level. Above this level both stretching and transverse motions take place. The influences of system parameters such as gravity-to-stiffness ratio and density ratio on the response characteristics are also reported.  相似文献   

13.
The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two-degrees-of-freedom system with one modal coordinate for the in-plane displacement and one for the out-of-plane displacement. At first harmonic varying chord elongation at excitation frequencies close to the corresponding eigenfrequencies of the cable is considered in order to identify stable modes of vibration. Depending on the initial conditions the system may enter one of two states of vibration in the static equilibrium plane with the out-of-plane displacement equal to zero, or a whirling state with the out-of-plane displacement different from zero. Possible solutions are found both analytically and numerically. Next, the chord elongation is modelled as a narrow-banded Gaussian stochastic process, and it is shown that all the indicated harmonic solutions now become instable with probability one. Instead, the cable jumps randomly back and forth between the two in-plane and the whirling mode of vibration. A theory for determining the probability of occupying either of these modes at a certain time is derived based on a homogeneous, continuous time three states Markov chain model. It is shown that the transitional probability rates can be determined by first-passage crossing rates of the envelope process of the chord wise component of the support point motion relative to a safe domain determined from the harmonic analysis of the problem.  相似文献   

14.
The nonlinear characteristics in the large amplitude three-dimensionalfree vibrations of inclined sagged elastic cables are investigated. Amodel formulation which is not limited to cables having smallsag-to-span ratios and takes into account the axial deformation effectis considered. Based on a multi-degree-of-freedom cable model, a finitedifference discretization is employed within a numerical solution of thegoverning equations of three-dimensional coupled motion. Variousnumerical examples of arbitrarily inclined sagged cables with initialout-of-plane or in-plane motions are carried out for the case of aspecified end tension. The major findings consist of highlighting theextent of two-and three-dimensional nonlinear couplings, the occurrenceof nonlinear dynamic tensions, and the meaningfulness of modaltransition phenomena ensuing from the activation of various internalresonance conditions. The influence of cable inclination on thenonlinear dynamic behavior is also evaluated. Comprehensive discussionand comparison of large amplitude free vibrations of horizontal andinclined sagged cables are presented.  相似文献   

15.
悬索在考虑1:3内共振情况下的动力学行为   总被引:2,自引:0,他引:2  
研究了悬索在受到外激励作用下考虑1∶3内共振情况下的两模态非线性响应.对于一定范围内悬索的弹性-几何参数而言,悬索的第三阶面内对称模态的固有频率接近于第一阶面内对称模态固有频率的三倍,从而导致1∶3内共振的存在.首先利用Galerkin方法把悬索的面内运动方程进行离散,然后利用多尺度法对离散的运动方程进行摄动得到主共振情况下的平均方程.接下来对平均方程的稳态解、周期解以及混沌解进行了研究.最后利用Runge-Kutta法研究了悬索两自由度离散模型的非线性响应.  相似文献   

16.
Askarian  A. R.  Abtahi  H.  Firouz-Abadi  R. D. 《Meccanica》2019,54(11-12):1847-1868

In this paper, numerical investigation of the statical and dynamical stability of aligned and misaligned viscoelastic cantilevered beam is performed with a terminal nozzle in the presence of gravity in two cases: (1) effect of fluid velocity on the flutter boundary of beam conveying fluid and (2) effect of gravity on the buckling boundary of beam conveying fluid. The beam is assumed to have a large width-to-thickness ratio, so the out-of-plane bending rigidity is far higher than the in-plane bending and torsional rigidities. Gravity vector is considered in the vertical direction. Thus, deflection of the beam because of the gravity effect couples the in-plane bending and torsional equations. The beam is modeled by Euler–Bernoulli beam theory, with the flow-induced inertia, Coriolis and centrifugal forces along the beam considered as a distributed load along the beam. Furthermore, the end nozzle is regarded as a lumped mass and modeled as a follower axial force. The extended Hamilton’s principle and the Galerkin method are utilized to derive the bending–torsional equations of motion. The coupled equations of motion are solved as eigenvalue problems. Also, several cases are examined to study the impact of gravity, beam inclination angle, mass ratio, nozzle aspect ratio, bending-to-bending rigidity ratio and bending-to-torsional rigidity ratio on flutter and buckling margin of the system.

  相似文献   

17.
李丽君  曾晓辉  崔哲华  吴晗 《力学学报》2023,55(5):1138-1150
缆索结构被广泛应用于电气、土木、海洋和航空工程等领域,随着缆索在工程中的应用长度越来越长,高阶振动越来越明显,研究时应该考虑扰动沿着缆索的传播.现有对缆索弹性波传播的研究中,通常不考虑阻尼项,然而阻尼对于波的传播有着重要影响.文章考虑阻尼的影响,发展了包含阻尼项的三维弹性缆索运动方程.通过求解上述含阻尼项的运动方程,分别考察了面内面外弹性波的频率关系、相速度和群速度等自由传播特性,进而通过计算无限长弹性缆索在初始余弦型脉冲作用下的位移响应,分析扰动沿着该缆索的传播规律,考察波的色散现象以及阻尼对于缆索弹性波传播的影响.结果表明,考虑阻尼后,面内波和面外波均为色散波,面内波在曲率的作用下,为高度色散波.此外,在阻尼的影响下,波的峰值在传播过程不断减小,且波的后缘端点响应总是高于前缘端点响应.  相似文献   

18.
In this article, the governing equations of motion of thick laminated transversely isotropic plates are derived based on Reddy’s third-order shear deformation theory. These equations are exactly converted to four uncoupled equations to study the in-plane and out-of-plane free vibrations of thick laminated plates without any usage of approximate methods. Based on the present analytical approach, exact Levy-type solutions are obtained for thick laminated transversely isotropic plates and, for some boundary conditions, the exact characteristic equations hitherto not reported in the literature are given. Also, the in-plane and out-of-plane deformed mode shapes are plotted for different boundary conditions. The present solutions can accurately predict both the in-plane and out-of-plane natural frequencies and mode shapes of thick laminated transversely isotropic plates.  相似文献   

19.
Nonlinear vibration analysis of viscoelastic cable with small sag   总被引:3,自引:0,他引:3  
Both the inplane and out-of-plane transverse vibrations of a viscoelastic cable subjected to an initial stress distributing uniform on the cross section are studied. The constitution of the cable material is assumed to be of the hereditary integral type. The partial differential-integral equations of motion are derived first. Then by applying Galerkin's method, the governing equations are reduced to a set of second-order nonlinear differential-integral equations which are solved by finite difference numerical integration procedures. Finally, the effects of the viscosity parameter and the elastic parameter on the transient amplitudes of the first mode are investigated by numerical simulation. Project supported by the National Natural Science Foundation of China (No. 59635140) and the National Postdoctoral Foundation of China.  相似文献   

20.
We consider an L-shaped beam structure and derive all the equations of motion considering also the rotary inertia terms. We show that the equations are decoupled in two motions, namely the in-plane bending and out-of-plane bending with torsion. In neglecting the rotary inertia terms the torsional equation for the secondary beam is fully decoupled from the other equations for out-of-plane motion. A numerical modal analysis was undertaken for two models of the L-shaped beam, considering two different orientations of the secondary beam, and it was shown that the mode shapes can be grouped into these two motions: in-plane bending and out-of-plane motion. We compared the theoretical natural frequencies of the secondary beam in torsion with finite element results which showed some disagreement, and also it was shown that the torsional mode shapes of the secondary beam are coupled with the other out-of-plane motions. These findings confirm that it is necessary to take rotary inertia terms into account for out-of-plane bending. This work is essential in order to perform accurate linear modal analysis on the L-shaped beam structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号