首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titanium dioxide thin films having various nanostructures could be formed by various treatments on sodium titanate nanotube thin films approximately 5 μm thick fixed on titanium metal plates. Using an aqueous solution with a lower hydrochloric acid concentration (0.01 mol/L) and a higher reaction temperature (90 °C) than those previously employed, we obtained a hydrogen titanate nanotube thin film fixed onto a titanium metal plate by H+ ion-exchange treatment of the sodium titanate nanotube thin film. Calcination of hydrogen titanate nanotube thin films yielded porous thin films consisting of anatase nanotubes, anatase nanowires, and anatase nanoparticles grown directly from the titanium metal plate. H+ ion-exchange treatment of sodium titanate nanotube thin films at 140 °C resulted in porous thin films consisting of rhomboid-shaped anatase nanoparticles.  相似文献   

2.
Small titanate nanowires with NaTi_2O_4(OH) formulation were directly synthesized via the hydrothermal reaction of amorphous titanate particles with concentrated Na OH solution.The average width of these nanowires is smaller than 20 nm,and the surface area is higher than 200 m~2/g.Compared with the larger nanowires obtained by the hydrothermal treatment of crystalline titania in alkaline solution,these small nanowires exhibit larger adsorption capacities and faster adsorption rate in the removal of both heavy metal ions and dyes.  相似文献   

3.
Titanate nanotubes (TNT) were prepared via a hydrothermal treatment of TiO(2) powders (P25) in a 10 M NaOH solution at 150 degrees C for 24 h and subsequently washed with HCl aqueous solution of different concentrations (0.1, 0.01, and 0.001 N). Samples with different contents of remnant sodium in nanotubes were characterized, as synthesized and after heat-treatment, by transmission electron microscopy, X-ray diffraction, and nitrogen adsorption-desorption isotherms. The photocatalytic activity of TNT was evaluated by photocatalytic oxidation of basic dye (basic violet 10 (BV10)) in water solution. It was found that if the sodium was not completely exchanged with proton, the removal of sodium increased the specific surface area (and pore volume), while the thermal stability was reduced. When the sodium content of TNT was approximately 0 wt% (nearly complete proton exchange), the nanotubular structure of titanates might be destroyed. The effects of the alterations of microstructures induced by the exchange of sodium and heat-treatment on the photocatalytic activity of TNT were discussed with the variations of specific surface area, pore volume, and the amounts of anatase phase in TNT.  相似文献   

4.
以二硫化钛为钛源和硫源,通过与NaOH水热反应成功制备了硫掺杂钛酸(盐)纳米管。 采用X射线衍射、高分辨透射电子显微镜、扫描电子显微镜、扩展X射线吸收精细结构(EXAFS)和X光微区分析等手段对所制备的硫掺杂钛酸(盐)纳米管的结构、形貌、硫掺杂状态和掺杂量进行了表征,并以可见光光催化氧化乙醇反应为探针,采用原位气相色谱技术研究了硫掺杂钛酸纳米管的可见光光催化活性;结果表明,S原子以S2-形式取代了钛酸纳米管骨架中O原子的位置, 有效实现了硫掺杂;硫掺杂钛酸(盐)纳米管壁厚平均尺寸为2.9 nm,管径平均尺寸为9.7 nm。 可见光光催化氧化乙醇反应结果表明,掺硫钛酸纳米管在极低的掺硫量条件下,表现出比未掺杂的二氧化钛纳米管具有更高的可见光光催化活性。  相似文献   

5.
Titanate nanotubes were synthesized under hydrothermal conditions. The optimized synthesis (100-180 degrees C, longer than 48 h), thermal and hydrothermal stability, ion exchangeability and consequent magnetic and optical properties of the titanate nanotubes were systematically studied in this paper. First, nanotubes with monodisperse pore-size distribution were prepared. The formation mechanism of the titanate nanotubes was also studied. Second, the thermal and hydrothermal stability were characterized with X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FTIR), and Raman spectroscopy. Results showed that sodium ions played a significant role in the stability of the frameworks. Third, the selective ion exchangeability was demonstrated with a series of ions. The ion substitution also enlarged the BET surface area of the titanate nanotubes to 240 m(2) x g(-1). Combination of these two features implied that these nanotubes might be functionalized by substitution of different transitional-metal ions and consequently used for selective catalysis. Magnetism, photoluminescence, and UV/Vis spectra of the substituted titanate nanotubes revealed that the magnetic and optical properties of the nanotubes were modifiable.  相似文献   

6.
Through structure-monitoring of nanotube formation from a lamellar sodium titanate, the present work explicitly elucidated the structure of the titanate nanotubes obtained from hydrothermal treatment of TiO(2) with NaOH. A new compound of an orthorhombic lepidocrocite-type sodium titanate was synthesized from calcination of a solid-state mixture of TiO(2) anatase and Na(2)CO(3) powders followed by hydrothermal treatment with NaOH. By treating with acid at 25 degrees C for Na(+) exchange with H(3)O(+), the titanate compound exfoliated and then proceeded with sheet-scrolling to form nanotubes, which had a structure and morphology very close to those of the nanotubes derived from NaOH treatment on TiO(2). During the low-temperature acid treatment, the lepidocrocite-type titanate is transformed from the orthorhombic C-base-centered symmetry to the body-centered symmetry. This transformation, accompanied by a size-contraction of TiO(6)-octahedron units, was critical for the formation of nanotubes. The present work provides direct evidence, for the first time, that the widely reported TiO(2)-derived titanate nanotubes can be obtained at low temperatures by scrolling the sheets exfoliated from the orthorhombic lepidocrocite-type titanate.  相似文献   

7.
Copper ion–exchanged titanate nanotubes (Cu-TiNTs) had been prepared from a simple ion-exchange reaction between copper salt and sodium titanate nanotubes (Na-TiNT) which was synthesized by alkaline hydrothermal synthesis starting from titanium oxide of anatase phase. A thorough structural and morphological characterization of Cu-TiNT (and Na-TiNT) was done by using various material characterization techniques, such as X-ray diffraction, Raman spectroscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy to reveal retention of tubular structure of titanate nanotubes with decoration of copper (II) oxide on the surface of the tubes as well as an exchange of Na+ ion by Cu2+ ion in the interlamellar space. The antibacterial properties of the Cu-TiNT were evaluated by broth macrodilution method using microtiter trays, with concentration ranging between 512 and 0.5 μg/mL. The Cu-TiNT demonstrated no clinically relevant antibacterial activity alone (minimum inhibitory concentration ≥ 1024 μg/mL), but when associated with gentamicin, this compound enhanced the antibiotic activity of this drugs against strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The results were very promising to the utilization of the Cu-TiNT as an adjuvant to the antibiotic therapy.  相似文献   

8.
Titanate nanofibers of various sizes and layered structure were prepared from inorganic titanium compounds by hydrothermal reactions. These fibers are different from "refractory" mineral substances because of their dimension, morphology, and significant large ratio of surface to volume, and, surprisingly, they are highly reactive. We found, for the first time, that phase transitions from the titanate nanostructures to TiO(2) polymorphs take place readily in simple wet-chemical processes at temperatures close to ambient temperature. In acidic aqueous dispersions, the fibers transform to anatase and rutile nanoparticles, respectively, but via different mechanisms. The titanate fibers prepared at lower hydrothermal temperatures transform to TiO(2) polymorphs at correspondingly lower temperatures because they are thinner, possess a larger surface area and more defects, and possess a less rigid crystal structure, resulting in lower stability. The transformations are reversible: in this case, the obtained TiO(2) nanocrystals reacted with concentrate NaOH solution, yielding hollow titanate nanotubes. Consequently, there are reversible transformation pathways for transitions between the titanates and the titanium dioxide polymorphs, via wet-chemical reactions at moderate temperatures. The significance of these findings arises because such transitions can be engineered to produce numerous delicate nanostructures under moderate conditions. To demonstrate the commercial application potential of these processes, we also report titanate and TiO(2) nanostructures synthesized directly from rutile minerals and industrial-grade rutiles by a new scheme of hydrometallurgical reactions.  相似文献   

9.
采用一步水热法合成了Cu纳米粒子负载二氧化钛纳米管材料. 利用透射电子显微镜(TEM)、X射线衍射仪(XRD)、能谱仪(EDS)等对材料的相组成、形貌以及形成过程进行了研究. 制得的Cu-TiO2复合纳米材料长度约为100 nm, 直径10-15 nm, 其上负载的Cu纳米粒子尺寸约为5 nm. BET比表面积测试表明实验制备的Cu-TiO2复合纳米管的比表面积为154.67 m2·g-1. 通过调节水热反应时间和钛前驱体种类, 研究了该复合纳米管材料的形成机制. 结果表明: 非晶态的钛源对于成功一步合成Cu-TiO2复合纳米管至关重要. 同时, 实验中观察到铜纳米粒子的尺寸随水热反应时间延长而减小(反奥氏陈化过程), 这一现象有助于纳米粒子的可控合成.紫外-可见吸收光谱表明该复合纳米管在350-800 nm范围内有较强的吸收, 并在550-600 nm范围观察到Cu的表面等离子激元吸收带. Cu-TiO2界面处形成的肖特基势垒有助于加快光生载流子的输运, 提高光生电子-空穴对的分离效率. 光催化实验表明Cu-TiO2复合纳米管在可见光下具有较高的催化活性.  相似文献   

10.
Titanate nanotubes were synthesized utilizing the hydrothermal method using titanium dioxide nanoparticles. The experiments were carried out considering the process as a function of reaction temperature, time, NaOH concentration and the acidity of the washing solution. The formation of titanate nanotubes was shown to be affected strongly by variations in any parameter. The optimum conditions for the synthesis of titanate nanotubes were determined to be a reaction temperature of 190 °C, and a reaction time of 12 h, using 10 M NaOH concentration and the washing solution to have a pH of 5.5. In addition, thermogravimetric analysis (TG/DTG) was used to investigate the thermal behaviour and dehydration kinetics of titanate nanotubes. In order to better understand their thermal behaviour, the thermal analysis of bulk hydrogen trititanate was performed. The values of the apparent activation energies of the first and second dehydration stages for titanate nanotubes were 81.44 ± 15.85 and 82.69 ± 7.46 kJ mol?1, respectively. The values of the apparent activation energies of the first, second and third dehydration stages for bulk hydrogen trititanate were 115.93 ± 5.40, 137.58 ± 6.47 and 138.97 ± 8.47 kJ mol?1, respectively.  相似文献   

11.
Titanate nanotube bundles assembled by several simple nanotubes were synthesized through a simple reaction between TiO2 crystallites and highly concentrated NaOH in the presence of Au or Pd sols. Due to the unique scrolling growth mechanism of titanate nanotubes (TNTs), Au or Pd clusters were encapsulated in situ by TNTs, and titanate/Au and titanate/Pd nanotube bundles were formed. In comparison with carbon nanotubes (CNTs) or active carbon that was widely used as carriers to support metal clusters, TNTs bundles can immobilize the metal clusters tightly and overcome the shortcoming of exfoliation of metal clusters from the carriers. The as-prepared titanate/metal hybrids possess mesoporosity and high surface area. The electrochemical oxidation of methanol demonstrates that titanate/Pd hybrids exhibit high electrocatalytic activity and excellent stability, and hence they should be ideal catalyst candidates in direct methanol fuel cells (DMFCs).  相似文献   

12.
We present a facile vapor-phase hydrothermal approach for direct growth of vertically aligned titanate nanotubes on a titanium foil substrate. The resultant nanotubes display external diameters of 50-80 nm and walls with an average thickness of 10 nm that consist of more than 10 titanate layers. This is in strong contrast to the titanate nanotubes obtained from alkaline liquid-phase hydrothermal methods, which are generally smaller than 12 nm in external diameter and have walls consisting of less than five titanate layers. Importantly, the investigation confirmed that under vapor-phase hydrothermal conditions, the nanotubes were formed via a distinctive nanosheet roll-up mechanism that differs remarkably from those of conventional liquid-phase hydrothermal processes. For the first time, a coaxial circular cylinder crystal structure of the resultant nanotubes was confirmed.  相似文献   

13.
Study of the phase formation in the systems TiO2?MO(M2O3)?KOH?H2O (M = Mg, Ni, Al) from crystalline and coprecipitated X-ray-amorphous mixtures demonstrated that doped potassium titanate nanotubes can be obtained in a hydrothermal treatment of coprecipitated hydroxides in the temperature range 170?220°C. The average outer diameter of the thus synthesized nanotubes strongly depends on the element being introduced and is 5 to 10 nm. The nanotubes have a large specific surface area (200?300 m2 g?1) and are stable up to a temperature of 500°C, above which they decompose to give potassium hexatitanate. The nanotubes can be used as sorbents, photocatalysts, and components of composite materials for frictional and construction purposes.  相似文献   

14.
以超强耐酸碱的表面活性剂-丁基封端脂肪醇聚氧乙烯醚作为晶型调节剂,利用钛酸丁酯和氢氧化钠的水热反应制备了单斜相与锐钛矿相双晶相TiO2/多壁碳纳米管(简称MWNTs)复合材料,并考察了复合材料的可见光光催化活性。结果显示:MWNTs的加入可调控TiO2的晶相组成,增强TiO2的光催化活性,其中含5%MWNTs的样品具有较高的催化降解效率;随煅烧温度的升高,样品的光催化活性大幅提升。其机理归因于(1)促进单斜相和锐钛矿相双晶相结构的形成;(2)碳纳米管优良的导电作用及碳纳米管/TiO2间的异质结效应;(3)高温下碳纳米管分解产生的碳元素掺杂作用。  相似文献   

15.
在水热条件下, 通过控制反应温度和氢氧化钠的浓度, 在钛金属表面得到结构可控的多层钛酸盐纳米管薄膜. 根据扫描电子显微镜和高倍透射电子显微镜的观测结果, 认为钛金属表面多层钛酸盐纳米管薄膜的形成经历以下4个阶段: (1) 钛金属的水合和碱性钛酸盐水凝胶的生成; (2) 碱性钛酸盐水凝胶分解并形成层状Na2Ti3O7; (3) 层状Na2Ti3O7的生长; (4) 层状Na2Ti3O7的劈裂和多层卷曲成轴形成纳米管. 研究了薄膜形成后机械处理对薄膜形貌和结构稳定性的影响, 并利用超声的方法实现了多层膜的层分离.  相似文献   

16.
以超强耐酸碱的表面活性剂-丁基封端脂肪醇聚氧乙烯醚作为晶型调节剂,利用钛酸丁酯和氢氧化钠的水热反应制备了单斜相与锐钛矿相双晶相TiO2/多壁碳纳米管(简称MWNTs)复合材料,并考察了复合材料的可见光光催化活性。结果显示:MWNTs的加入可调控TiO2的晶相组成,增强TiO2的光催化活性,其中含5%MWNTs的样品具有较高的催化降解效率;随煅烧温度的升高,样品的光催化活性大幅提升。其机理归因于(1)促进单斜相和锐钛矿相双晶相结构的形成;(2)碳纳米管优良的导电作用及碳纳米管/TiO2间的异质结效应;(3)高温下碳纳米管分解产生的碳元素掺杂作用。  相似文献   

17.
Synergistic effect of CdS decorated sodium titanate nanostructures showed enhanced H2 production abilities. The confinement effect and synergistic effect of decorated CdS inside the sodium titanate nanotubes are investigated.  相似文献   

18.
在南开大学化学学院本科生的暑期科研训练中,开展"氮氟双掺杂TiO_2纳米管的制备、表征和光催化性能研究"综合实验,以水热法制备的钛酸纳米管为前驱体,通过含氟化铵的钛溶胶对纳米管进行浸渍修饰,制备氮氟双掺杂的TiO_2纳米管,采用透射电镜、X射线衍射、TG-DTA、XPS、紫外漫反射等手段表征所得材料,以甲基橙溶液模拟有机废水,研究催化剂在紫外及模拟日光下的催化降解性能。通过贴近科研前沿的实验内容,对学生进行系统的初步科研培训,培养学生的综合科研能力。  相似文献   

19.
Pt nanocrystal-supported titanate nanotubes as a photocatalyst were prepared by hydrothermal treatment and subsequent heat-treatment in H2 atmosphere (H2 reduction) of a mixture of these titanate nanotubes and H2PtCl6. TEM results showed that Pt nanoparticles (a few nm in diameter and 5 to 10 nm in length) with good crystallinity were entrapped inside titanate naotubes and were closely precipitated on the surface of titanate nanotubes. These Pt nanocrystal-supported titanate nanotubes possessed the high ability for HCHO decomposition.  相似文献   

20.
采用水热法以Hummers氧化法制备的氧化石墨和钛酸四丁酯为原料制备了部分还原的氧化石墨烯/二氧化钛(RGO/TiO2)复合光催化剂, 并研究了该复合材料在可见光以及紫外光下对亚甲基蓝的光催化降解活性.结果表明, 通过改变反应温度和氧化石墨加入量可以调控TiO2的晶相组成及其在复合材料中的分散性; 在水热反应过程中氧化石墨烯发生了部分还原; 所制备的RGO/TiO2复合材料的可见光和紫外光催化活性均高于纯TiO2; 部分还原的氧化石墨烯在复合材料中担当载体和电子受体, 同时可以使TiO2的初始吸收边向可见光区域红移, 增强了TiO2在可见光区域的吸收, 能有效提高对目标污染物的吸附性和光催化降解活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号