共查询到20条相似文献,搜索用时 15 毫秒
1.
Gholam Hossein Rounaghi Razyeh Sanavi Khoshnood Mohammad Hossein Arbab Zavvar 《Journal of inclusion phenomena and macrocyclic chemistry》2006,54(3-4):247-252
The complexation reactions between Mg2+, Ca2+, Ag+ and Cd2+ metal cations with N-phenylaza-15-crown-5 (Ph-N15C5) were studied in acetonitrile (AN)–methanol (MeOH), methanol (MeOH)–water (H2O) and propanol (PrOH)–water (H2O) binary mixtures at different temperatures using the conductometric method. The conductance data show that the stochiometry of all of the complexes with Mg2+, Ca2+, Ag+ and Cd2+ cations is 1:1 (L:M). The stability of the complexes is sensitive to the solvent composition and a non-linear behaviour was observed for variation of log K
f of the complexes versus the composition of the binary mixed solvents. The selectivity order of Ph-N15C5 for the metal cations in neat MeOH is Ag+>Cd2+>Ca2+>Mg2+, but in the case of neat AN is Ca2+>Cd2+>Mg2+>Ag+. The values of thermodynamic parameters (ΔH
c
o
, ΔS
c
o
) for formation of Ph-N15C5–Mg2+, Ph-N15C5–Ca2+, Ph-N15C5–Ag+ and Ph-N15C5–Cd2+ complexes were obtained from temperature dependence of stability constants and the results show that the thermodynamics of complexation reactions is affected by the nature and composition of the mixed solvents. 相似文献
2.
Gholamhossein Rounaghi Mahmood Chamsaz Azizollah Nezhadali 《Journal of inclusion phenomena and macrocyclic chemistry》2000,38(1-4):153-161
The complexation of Pb2+, Tl+ and Cd2+ cationsby 18-crown-6 was studied in water/propanol (H2O/PrOH),water/acetonitrile (H2O/AN) and water/dimethylformamide(H2O/DMF) binary systems at 20 °C using squarewave polarography (SWP) and differential pulse polarography (DPP).It was confirmed that the stoichiometry of each of the complexes formed between 18C6 and the respective cations is 1 : 1. The formation constants of the complexes were found to increase with increasing concentration of the non-aqueous solvent. In all cases, a stability order of Pb2+ > Tl+ > Cd2+ was observed. In general,the stabilities of individual complexes were found to decrease as the binary solvent mixture varied from H2O/AN to H2O/PrOH to H2O/DMF. 相似文献
3.
Gh. H. Rounaghi A. Soleamani K. R. Sanavi 《Journal of inclusion phenomena and macrocyclic chemistry》2007,58(1-2):43-48
The complexation reactions between Ag+, Hg2+ and Pb2+ metal cations with aza-18-crown-6 (A18C6) were studied in dimethylsulfoxide (DMSO)–water (H2O) binary mixtures at different temperatures using the conductometric method. The conductance data show that the stoichiometry
of the complexes in most cases is 1:1(ML), but in some cases 1:2 (ML2) complexes are formed in solutions. A non-linear behaviour was observed for the variation of log K
f of the complexes vs. the composition of the binary mixed solvents. Selectivity of A18C6 for Ag+, Hg2+ and Pb2+ cations is sensitive to the solvent composition and in some cases and in certain compositions of the mixed solvent systems,
the selectivity order is changed. The values of thermodynamic parameters (ΔH
co, ΔS
co) for formation of A18C6–Ag+, A18C6–Hg2+ and A18C6–Pb2+ complexes in DMSO–H2O binary systems were obtained from temperature dependence of stability constants and the results show that the thermodynamics
of complexation reactions is affected by the nature and composition of the mixed solvents. 相似文献
4.
G. H. Rounaghi F. Mofazzeli 《Journal of inclusion phenomena and macrocyclic chemistry》2005,51(3-4):205-210
The complexation reactions between Mg2+,Ca2+,Sr2+ and Ba2+ metal cations with macrocyclic ligand, dicyclohexano-18-crown-6 (DCH18C6) were studied in methanol (MeOH)–water (H2O) binary mixtures at different temperatures using conductometric method . In all cases, DCH18C6 forms 1:1 complexes with these metal cations. The values of stability constants of complexes which were obtained from conductometric data show that the stability of complexes is affected by the nature and composition of the mixed solvents. While the variation of stability constants of DCH18C6-Sr 2+ and DCH18C6-Ba2+versus the composition of MeOH–H2O mixed solvents is monotonic, an anomalous behavior was observed for variations of stability constants of DCH18C6-Mg2+ and DCH18C6-Ca2+ versus the composition of the mixed solvents. The values of thermodynamic parameters (ΔHc°, ΔSc°) for complexation reactions were obtained from temperature dependence of formation constants of complexes using the van’t Hoff plots. The results show that in most cases, the complexation reactions are enthalpy stabilized but entropy destabilized and the values of thermodynamic parameters are influenced by the nature and composition of the mixed solvents. The obtained results show that the order of selectivity of DCH18C6 ligand for metal cations in different concentrations of methanol in MeOH–H2O binary system is: Ba2+>Sr2+>Ca2+> Mg2+. 相似文献
5.
Mohammad Ansarifard Gholamhossein Rounaghi 《Journal of inclusion phenomena and macrocyclic chemistry》2005,52(1-2):39-44
The complexation reactions between Mg2+, Ca2+, Sr2+ and Ba2+ cations with the macrocyclic ligand, 18-Crown-6 (l8C6) in water–methanol (MeOH) binary systems as well as the complexation reactions between Ca2+ and Sr2+ cations with 18C6 in water–ethanol (EtOH) binary mixtures have been studied at different temperatures using conductometric method. The conductance data show that the stoichiometry of all the complexes is 1:1. It was found that the stability of 18C6 complexes with Mg2+, Ca2+, Sr2+ and Ba2+ cations is sensitive to solvent composition and in all cases, a non-linear behaviour was observed for the variation of log K
f of the complexes versus the composition of the mixed solvents. In some cases, the stability order is changed with changing the composition of the mixed solvents. The selectivity order of 18C6 for the metal cations in pure methanol is: Ba2+ > Sr2+ > Ca2+ > Mg2+. The values of thermodynamic parameters (Δ H
c
° and Δ S
c
°) for formation of 18C6–Mg2+, 18C6–Ca2+, 18C6–Sr2+ and 18C6–Ba2+complexes were obtained from temperature dependence of the stability constants. The obtained results show that the values of (Δ H
c
° and Δ S
c
°) for formation of these complexes are quite sensitive to the nature and composition of the mixed solvent, but they do not vary monotonically with the solvent composition.This revised version was published online in July 2005 with a corrected issue number. 相似文献
6.
Gholamhossein Rounaghi Ali Sarafraz Yazdi Zahra Monsef 《Journal of inclusion phenomena and macrocyclic chemistry》2002,43(3-4):231-237
The complexes of Tl+, Pb2+ and Cd2+ cations with the macrocyclic ligand, dicyclohexano-18-crown-6\linebreak(DC18C6) were studied in water/methanol (H2+O/MeOH), water/1-propanol (H2+O/1-PrOH), water/acetonitrile (H2+O/AN), water/dimethylformamide (H2+O/DMF), dimethylformamide/acetonitrile (DMF/AN), dimethylformamide/methanol (DMF/MeOH), dimethylformamide/1-propanol (DMF/1-PrOH) and dimethylformamide/nitromethane (DMF/NM) mixed solvents at 22 °C using differential pulse polarography (DPP), square wave polarography and conductometry. In general, the stability of the complexes was found to decrease with increasing concentration of water in aqueous/non-aqueous mixed solvents with an inverse relationship between the stability constants of the complexes and the concentration of DMF in non-aqueous mixed solvents. The results show that the change in stability of DC18C6.Tl+, vs the composition of solvent in DMF/AN and DMF/NM mixed solvents is apparently different from that in DMF/MeOH and DMF/1-PrOH mixed solvents. While the variation of stability constants of the DC18C6.Tl+ and DC18C6.Pb2+ complexes vs the composition of H2+O/AN mixed solvents is monotonic, an anomalous behavior was observed for variations of log Kf vs the composition of H2+O/1-PrOH and H2+O/MeOH mixed solvents. The selectivity order of the DC18C6 ligand for the cations was found to be Pb2+ > Tl+ > Cd2+. 相似文献
7.
G.H. Rounaghi G.N. Gerey M.S. Kazemi 《Journal of inclusion phenomena and macrocyclic chemistry》2006,55(1-2):167-172
The complex formation between Cu2+, Zn2+, Tl+ and Cd2+ metal cations with macrocyclic ligand, dibenzo- 18-crown-6 (DB18C6) was studied in dimethylsulfoxide (DMSO)–ethylacetate (EtOAc) binary systems at different temperatures using conductometric method. In all cases, DB18C6 forms 1:1 complexes with these metal cations. The stability constants of the complexes were obtained from fitting of molar conductivity curves using a computer program, Genplot. The non-linear behaviour which was observed for variations of log K
f of the complexes versus the composition of the mixed solvent was discussed in terms of changing the chemical and physical properties of the constituent solvents when they mix with one another and, therefore, changing the solvation capacities of the metal cations, crown ether molecules and even the resulting complexes with changing the mixed solvent composition. The results show that the selectivity order of DB18C6 for the metal cations in pure ethylacetate and pure dimethylsulfoxide is: Tl+ > Cu2+ > Zn2+ > Cd2+ but the selectivity order is changed with the composition of the mixed solvents. The values of enthalpy changes (ΔH°C) for complexation reactions were obtained from the slope of the van’t Hoff plots and the changes in standard enthalpy (ΔS°C) were calculated from the relationship: ΔG°C,298.15=ΔH°C − 298.15 ΔS°C. The obtained results show that in most cases, the complexes are enthalpy stabilized, but entropy destabilized and the values of ΔH°C and ΔS°C depend strongly on the nature of the medium. 相似文献
8.
Zahra Monsef Gholamhossein Rounaghi Ali Sarafraz 《Journal of inclusion phenomena and macrocyclic chemistry》2001,39(3-4):321-325
The complexation of Tl+, Pb2+and Cd2+ cations by macrocyclic ligands, aza-18-crown-6 (L1) and dibenzopyridino-18-crown-6 (L2) was studied in some binary mixtures of methanol (MeOH), n-propanol (n-PrOH), nitromethane (NM) and acetonitrile (AN) with dimethylformamide (DMF) at 22 °C using DC (direct current) and differential pulse polarographic techniques (DPP). The stoichiometry and stability constants of the complexes were determined by monitoring the shifts in half-waves or peak potentials of the polarographic waves of metal ions against the ligand concentration. In all of the solvent systems, the stability of the resulting 1:1 complexes was found to be L1 > L2. The selectivity order of the L2 ligand for the cations was found to be Pb2+ > Tl+ > Cd2+ and the selectivity of the L1 ligand for Pb2+ ion was greater than that of Tl+ ion. The results show that the stability of the complexes depends on the nature and composition of the mixed solvents. There is an inverse relationship between the stability constants of the complexes and the amount of dimethylformamide in the mixed solvent systems. 相似文献
9.
Gholam Hossein Rounaghi Massoumeh Mohajeri Shima Ashrafi Hoda Ghasemi Saman Sedaghat Maryam Tavakoli 《Journal of inclusion phenomena and macrocyclic chemistry》2007,58(1-2):1-6
Conductance measurements are reported for nickel(II), cupper(II), silver(I) and cadmium(II), salts in acetonitrile (AN)–dimethylformamide
(DMF) binary solvents containing macrocyclic ligand, 1,10-dibenzyl-1,10-diaza-18-crown-6 (DBDA18C6) at different temperatures.
The changes in molar conductance caused by addition of DBDA18C6 to solutions were analyzed by non-linear least squares to
give stability constants of 1:1 metal cation–DBDA18C6 complexes. The results show that the stabilities of the complexes are
sensitive to solvent composition and in some cases the sequence of stabilities is changed with changing the composition of
the mixed solvents. The values of thermodynamic quantities (ΔH°c and ΔS°c) for formation of DBDA18C6-Ni2+, DBDA18C6-Cu2+, DBDA18C6-Ag+ and DBDA18C6-Cd2+ complexes were obtained from temperature dependence of the stability constants and the results show that the values of ΔH°c and ΔS°c for these complexes are sensitive to the nature and composition of AN–DMF binary solutions, but they do not vary monotonically
with the solvent composition. 相似文献
10.
S. Mahdizadeh G. H. Rounaghi M. Mohajeri F. Karimian 《Russian Journal of Inorganic Chemistry》2016,61(6):791-798
The complexation reactions between La3+, Y3+ and Ce3+ cations with the macrocyclic ligand, kryptofix 21, were studied in methanol-acetonitrile (MeOH-AN) and methanol-methylacetate (MeOHMeOAc) binary mixed solvent solutions at different temperatures using the conductometric method. The conductance data show that in most solvent systems, the kryptofix 21 forms a 1: 1 [M: L] complex with La3+, Y3+ and Ce3+ metal cations, but in the case of Y3+ cation in pure methylacetate, in addition of formation of a 1: 1 [ML] complex, 1: 2 [ML2] and 1: 3 [ML3] complexes are formed in solution. In the case of Ce3+cation, a 1: 1 [ML] and also a 1: 2 [ML2] complexes are formed in this solvent system at all studied temperatures. The electrical conductance data in acetonitrile, show that a 1: 1 [ML] and also a 1: 2 [ML2] complexes are formed between the ligand and La3+ and Ce3+ metal cations at different temperatures. The stability constants of the 1: 1 [ML] complexes were determined using the conductometric data and a computer program, GENPLOT. A non-monotonic relationship was observed between logK f of the 1: 1 complexes with the composition of the binary solvent solutions which was discussed in term of solvent-solvent interactions and also preferential solvation of the metal cations and the ligand in solutions. The selectivity order of the ligand for the metal cations in MeOH–AN and MeOH–MeOAc binary solvent solutions, at 25°C was found to be: Y3+ > La3+ > Ce3+ and La3+ > Y3+ > Ce3+, respectively. The values of the standard thermodynamic quantities (ΔH c ° and ΔS c ° ) for formation of the 1: 1 complexes were obtained from temperature dependence of the stability constans of the complexes and the results show that the thermodynamics of the complexation reactions between kryptofix 21 and La3+, Y3+ and Ce3+ cations, is affected by the nature and composition of the mixed solvents systems. 相似文献
11.
12.
Mojtaba Rshamsipur Mohammad Reza Ganjali 《Journal of inclusion phenomena and macrocyclic chemistry》1997,28(4):315-323
The complexation reactions between the protonated salts of aniline, o-hydroxy aniline, o-amino aniline and 2,3-benzo aniline (-naphthylamine) and macrocyclic ligands 18-crown-6,1,10-diaza-18-crown-6 and cryptand C222 have been studied conductometrically in acetonitrile, dimethylformamide and their 1 : 1 (mol–mol) mixture at 25 °C. Formation constants of the resulting 1 : 1 complexes were determined from the computer fitting of the molar conductance-mole ratio data. In all cases studied, the stability of the complexes decreases in the order C222 > 1,10-diaza-18-crown-6 > 18-crown-6. There is also an inverse relationship between the stabilities of the complexes and the Gutmann donor number of the solvents. It was found that, in the aromatic anilinium series used, increasing the bulkiness of the organic substituent in the ortho position results in a loss of complex stability. 相似文献
13.
Setareh Akbari Razieh Sanavi Khoshnood Elaheh Hatami 《Russian Journal of Physical Chemistry A, Focus on Chemistry》2017,91(13):2569-2577
Complexatio of the La3+ cation with 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane(Kryptofix5) was studied in pure solvents acetonitrile (AN), methanol (MeOH), nitrobenzene (NB), tetrahydrofuran (THF), methyl acetate (MeOAC) and in various binary solvent mixtures of AN–MeOH, AN–NB, AN–THF, and AN–MeOAC systems at different temperatures using the conductometric method. The stoichiometry of the complex was found to be 1 : 1 (ML). In all cases, the variation of the log kf with composition of the solvent was non-linear. This behavior is probably due to a change in the structure of these binary mixed solvents as the composition of the medium is varied. The stability order of the complex in pure nonaqueous solvents at 25°C increases in the order: AN > THF > MeOAC > MeOH > NB. The values of thermodynamic data (ΔH c °,ΔS c °) formation of (Kryptofix5.La)3+ complex are definitely solvent dependent. 相似文献
14.
G. H. Rounaghi M. H. Zavar R. Mohammad Zadeh Kakhki 《Russian Journal of Coordination Chemistry》2008,34(3):167-171
The complexation reactions between K+, Ag+, NH4+, and Hg2+ cations and the macrocyclic ligand, dibenzo-18-crown-6 (DB18C6), were studied in ethylacetate (EtOAc)-dimethylformamide (DMF)
binary mixtures at different temperatures using the conductometric method. The conductance data show that the stochiometry
of all the complexes is 1:1. A non-linear behavior was observed for the variation of log K
f
of the complexes versus the composition of binary mixed solvents, which was discussed in terms of heteroselective solvation
and solvent-solvent interactions in binary solutions. It was found that the stability order of the complexes changes with
changing the composition of the mixed solvents. The sequence of stabilities for the K+, Ag+, NH4+, and Hg2+ complexes with DB18C6 in EtOAc-DMF binary solutions (mol. % DMF 25.0) and (mol. % DMF 50.0) at 25°C is (DB18C6-Ag)+ > (DB18C6-K)+ > (DB18C6-Hg)2+ > (DB18C6-NH4)+, but in the cases of pure DMF and a binary solution of EtOAc-DMF (mol. % DMF 75.0) is (DB18C6-K)+ > (DB18C6-Hg)2+ > (DB18C6-Ag)+ ≈ (DB18C6-NH4)+. The values of thermodynamic quantities (ΔH
c
o, ΔS
c
o) for these complexation reactions have been determined from the temperature dependence of the stability constants, and the
results show that the thermodynamics of the complexation reactions is affected by the nature and composition of the mixed
solvents and, in all cases, positive values of ΔS
c
o characterize the formation of these complexes. In addition, the experimental results show that the values of entropies for
the complexation reactions between K+, Ag+, NH4+, and Hg2+ cations and DB18C6 in EtOAc-DMF binary solutions do not change monotonically with the solvent composition.
The text was submitted by the authors in English. 相似文献
15.
Javad Zolgharnein Hoomayon Tahmasebi Morteza Habibi Saeid Amani 《Journal of inclusion phenomena and macrocyclic chemistry》2004,49(3-4):231-234
The complexation of some alkali and alkaline earth cations with18-crown-6(18C6), dibenzo-18-crown-6 (DB18C6), dicyclohexyl-18-crown-6 (DCY18C6), and dibenzopyridino-18-crown-6 (DBPY18C6) in a methanol solution has been studied by a competitive potentiometric titration using Ag+/Ag electrode as a probe. The stoichiometry and stability constants of the resulting complexes have been evaluated by the MINIQUAD program. The stoichiometry for all resulting complexes was 1:1. The order of stability of Ag+ complexes with desired crown ethers varied as DBPY18C6 > DCY18C6 > 18C6 > DB18C6.The stability of the resulting complexes for each of these crown ethers varies in the order ofK+ > Na+ and Ba2+ > Sr2+ > Ca2+ > Mg2+.For each of the used metal ions the major sequence of the stability constants of the resulting complexes varies as DCY18C6 > 18C6 > DB18C6 > DBPY18C6 with minor exceptions. 相似文献
16.
The complexation reaction between Zn2+, Pb2+, Cd2+ and Tl+ cations by 5,7‐diiodo‐8‐hydroxyquinoline (IQN) was studied in the Dimethylformamide /Acetonitril (DMF‐AN) binary system using square wave polarography technique. The stoichiometry and stability of the complexes were determined by monitoring the shifts in half‐wave or peak potential of the polarographic waves of metal ions against the ligand concentration. The stoichiometry of the complexes was found to be 1:1. The results obtained show that there is an inverse relationship between the formation constant of the complexes and the donor number of solvent base on the Guttmann donocity scale. In all cases the formation constants increased with increasing amounts of AN in these binary systems. The selectivity order for IQN complexes with the cations is Zn2+ > Pb2+ > Cd2+ > Tl+. 相似文献
17.
Małgorzata Jóźwiak 《Journal of solution chemistry》2004,33(9):1073-1084
The equilibrium constants of complex formation of 15-crown-5 and benzo-15-crown-5 ethers with the sodium cation have been determined by conductivity measurements. The enthalpic effect of complex formation has been measured by a calorimetric method at 298.15 K. The thermodynamic functions of complex formation of 15-crown-5 and benzo-15-crown-5 ethers with the sodium cation in the mixtures of water with hexamethylphosportriamide at 298.15 K have been calculated. The extent of complex formation in this mixed solvent depends on the enthalpic effect. In water–hexamethylp- hosportriamide mixtures with medium and low water content, the complex of crown ethers with the sodium cation is not formed because of the strong solvation of sodium cation and crown ethers molecules; this implies that the entropy of complex formation is more negative than the enthalpy of complex formation. 相似文献
18.
Mojtaba Shamsipur Javad Zolgharnein 《Journal of inclusion phenomena and macrocyclic chemistry》2001,40(1-2):41-44
The complexation of dibenzopyridino-18-crown-6 with some transition and heavy metal ions in methanol solution at various temperatures was studied by a competitive potentiometric method using a Ag+/Agelectrode system. The stoichiometry and stability of the resulting complexes were computed by the MINIQUAD program. The stability of the resulting complexes varied in the order Ag+ > Pb2+ > Tl+ > Cu2+ > Cd2+ > Zn2+. The enthalpy and entropy of the resulting 1:1 complexeswere evaluated from the temperature dependence of the stability constants.The complexes of all cations were enthalpy-stabilized but entropy-destabilized,except for Ag+ and Pb2+ ions,which were also entropy-stabilized. 相似文献
19.
Xinning Liu Menghan Wu Chenchen Li Peng Yu Shanshan Feng Yanwei Li Qingzhu Zhang 《Molecules (Basel, Switzerland)》2022,27(8)
Heavy metals are non-biodegradable and carcinogenic pollutants with great bio-accumulation potential. Their ubiquitous occurrence in water and soils has caused serious environmental concerns. Effective strategies that can eliminate the heavy metal pollution are urgently needed. Here the adsorption potential of seven heavy metal cations (Cd2+, Cu2+, Fe3+, Hg2+, Mn2+, Ni2+ and Zn2+) with 20 amino acids was systematically investigated with Density Functional Theory method. The binding energies calculated at B3LYP-D3/def2TZVP level showed that the contribution order of amino acid side chains to the binding affinity was carboxyl > benzene ring > hydroxyl > sulfhydryl > amino group. The affinity order was inversely proportional to the radius and charge transfer of heavy metal cations, approximately following the order of: Ni2+ > Fe3+ > Cu2+ > Hg2+ > Zn2+ > Cd2+ > Mn2+. Compared to the gas-phase in other researches, the water environment has a significant influence on structures and binding energies of the heavy metal and amino acid binary complexes. Collectively, the present results will provide a basis for the design of a chelating agent (e.g., adding carboxyl or a benzene ring) to effectively remove heavy metals from the environment. 相似文献
20.