首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host–guest interactions between α- and β-cyclodextrins and nickel(II) polyazamacrocycles bearing aliphatic pendant arms (n-butyl, n-octyl and n-dodecyl) have been investigated, using redox kinetics as a probe, to estimate binding constants. Electrospray mass spectrometry shows the formation of inclusion complexes in aqueous solution. Cyclic voltammetric measurements show the cyclodextrins to have no effect on the redox potentials for the nickel(II/III) couples. Kinetics of oxidation of the nickel(II) complexes to the tervalent state exhibits rate retardation in the presence of the cyclodextrins. The outer-sphere oxidation of the nickel(II) macrocycles by aqua(5, 5, 7, 12, 12, 14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-1-acetato)nickel(III), [Ni(hmca)(OH2)]2+ obeys the rate law: $${ \hbox{Rate} ={k}_{\rm obs}[\hbox{Ni}^{\rm III}\hbox{(hmca)}\hbox{(OH}_{\rm 2})]=\frac{{[k}_{\rm 2} + {k}_{\rm 3}{K}_{\rm CD}\hbox{][Ni}^{\rm II}\hbox{L][Ni}^{\rm III}\hbox{(hmca)(OH}_{\rm 2}{)]}}{{(1 + K}_{\rm {CD}}\hbox{[CD])}}}$$ where k 2 is the rate constant for oxidation of the nickel(II) macrocycle in the absence of cyclodextrins, and k 3 is that for oxidation of the {NiL.CD} inclusion complex.  相似文献   

2.
Oxidation of Nickel(0) Complexes by Cyclic Imides of Dicarbonic Acids Normally, phthalimide (PI? H) or succinimide (SI? H) react with nickel(0) complexes — (dipy)Ni(COD) or (Ph3P)2Ni(C2H4) — by oxidative addition. The reaction of PI? H and the strong reductant (dipy)Ni(COD) is initiated by a one-electron transfer. Depending on the solvent, the resulting ion pair affords (dipy)NiI(PI) by spontaneous fragmentation or (dipy)NiII(H)(PI) by cage collaps. No interaction is found between the weak reductant (Ph3P)Ni(C2H4) and PI? H. Phosphine-containing nickel(0) complexes are electrophilically attacked by the acid NH group of SI? H. Hydrido complexes of nickel(0), such as (Cy3P)2Ni(H)(SI), or secondary products of them, such as [(SI)Ni(THF)]2NH, are formed. On the other hand, the reaction with (dipy)Ni(COD) affords only the binuclear substitution product [(dipy)Ni]2(SI? H)(THF). In solution prolongated heating of (dipy)Ni(PI)(THF)0,5 results in a partial decarbonylation. In contrast to the reaction of (dipy)Ni(COD) and cyclic carbonic acid anhydrides, no definite metalla rings but by an interaction with the solvent, benzamide is formed. With (dipy)Ni(COD) maleinimide does not react like on NH-acidic compound but like a polar olefine by substitution.  相似文献   

3.
Abstract

The novel high spin Ni2+ complexes of the topologically constrained tetraazamacrocycles (1–4) [4,11-dimethyl-1,4,8,11 - tetraazabicyclo[6.6.2]hexadecane (1); 4,10-dimethyl-1,4,7,10-tetraazabicyclo[6.5.2]pentadecane (2); 4,10-dimethyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane (3); racemic-4,5,7,7,11,12,14,14-octamethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (4)] show striking properties. Potentiometric titrations of the ligands 2 and 4 revealed them to be proton sponges, as reported earlier for 1 [1]. Ligand 3 is less basic, losing its last proton with a pK = 11.3(2). Despite high proton affinities, complexation reactions in the absence of protons successfully yielded Ni2+ complexes in all cases. The X-ray crystal structures of Ni(1)(acac)+, Ni(3)(acac)+ and Ni(1)(OH2)2 2+ demonstrate that the ligands enforce a distorted octahedral geometry on Ni2+ with two cis sites occupied by other ligands. Magnetic measurements and electronic spectroscopy on the corresponding Ni(L)Cl2 (L = 1–3) complexes reveal that all are high spin and six-coordinate with typical magnetic moments. In contrast, [Ni(4)Cl+] is five-coordinate with a slightly higher magnetic moment and its own characteristic electronic spectrum. The extra methyl groups on ligand 4 define a shallow cavity, sterically allowing only one chloride ligand to bind to the nickel(II) ion.  相似文献   

4.
A novel, useful in situ synthesis for NHC nickel allyl halide complexes [Ni(NHC)(η3-allyl)(X)] starting from [Ni(CO)4], NHC and allyl halides is presented. The reaction of [Ni(CO)4] with (i) one equivalent of the corresponding NHC and (ii) with an excess of the corresponding allyl chloride at room temperature leads with elimination of carbon monoxide to complexes of the type [Ni(NHC)(η3-allyl)(X)]. This approach was used to synthesize the complexes [Ni(tBu2Im)(η3-H2C -C (Me)-C H2)(Cl)] ( 2 ), [Ni(iPr2ImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 3 ), [Ni(iPr2Im)(η3-H2C -C (Me)-C H2)(Cl)] ( 4 ), [Ni(iPr2Im)(η3-H2C -C (H)-C (Me)2)(Br)] ( 5 ), [Ni(Me2ImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 6 ), and [Ni(EtiPrImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 7 ). The complexes 1 to 7 were characterized using NMR and IR spectroscopy and elemental analysis, and the molecular structures are provided for 2 and 7 . The allyl nickel complexes 1 – 7 are stereochemically non-rigid in solution due to (i) NHC rotation about the nickel-carbon bond, (ii) allyl rotation about the Ni–η3-allyl axis and (iii) π–σ–π allyl isomerization processes. The allyl halide complexes can be methylated as was demonstrated by the methylation of a number of the complexes [Ni(NHC)(η3-allyl)(X)] with methylmagnesium chloride or methyllithium, which led to isolation of the complexes [Ni(Me2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 8 ), [Ni(tBu2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 9 ), [Ni(iPr2ImMe)(η3-H2C -C (Me)-C H2)(Me)] ( 10 ), [Ni(iPr2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 11 ), [Ni(iPr2Im)(η3-H2C -C (H)-C (Me)2)(Me)] ( 12 ), and [Ni(EtiPrImMe)(η3-H2C -C (Me)-C H2)(Me)] ( 13 ). These complexes were fully characterized including X-ray molecular structures for 10 and 11 .  相似文献   

5.
The reactions of a series of 5-alkyl-2-thiophenedithiocarboxylates with nickel(II) chloride afforded two types of complexes, blue nickel(II) complexes with two terminal dithiocarboxylate ligands, [Ni(S2CTR)2] and violet nickel(II) complexes with perthio- and dithiocarboxylate ligands, [Ni(S2CTR)(S3CTR)] (where T = 2,5-disubstituted thiophene, R = CnH2n+1, n = 4, 6, 8, 12, 16). The blue monomers are preferred for the shorter chains (C4 and C6) and the violet compounds form exclusively for the longer chains (C8, C12, and C16) in the alkylthiophene complexes. In addition to the above series, [Ni(S2CTCH3)2], was prepared in a one-pot reaction in THF and both the blue and violet products were isolated. It was possible to convert the blue complexes [Ni(S2CTR)2] (R = butyl, hexyl) into the corresponding violet complexes [Ni(S2CTR)(S3CTR)] after stirring in THF solutions for prolonged periods of time. Liquid-crystalline properties of these complexes were examined by DSC and POM. The violet complexes with C8 and C12 alkyl chains showed liquid-crystalline properties.  相似文献   

6.
The nickel(II) N‐benzyl‐N‐methyldithiocarbamato (BzMedtc) complexes [Ni(BzMedtc)(PPh3)Cl] ( 1 ), [Ni(BzMedtc)(PPh3)Br] ( 2 ), [Ni(BzMedtc)(PPh3)I] ( 3 ), and [Ni(BzMedtc)(PPh3)(NCS)] ( 4 ) were synthesized using the reaction of [Ni(BzMedtc)2] and [NiX2(PPh3)2] (X = Cl, Br, I and NCS). Subsequently, complex 1 was used for the preparation of [Ni(BzMedtc)(PPh3)2]ClO4 ( 5 ), [Ni(BzMedtc)(PPh3)2]BPh4 ( 6 ), and [Ni(BzMedtc)(PPh3)2]PF6 ( 7 ). The obtained complexes 1 – 7 were characterized by elemental analysis, thermal analysis and spectroscopic methods (IR, UV/Vis, 31P{1H} NMR). The results of the magnetochemical and molar conductivity measurements proved the complexes as diamagnetic non‐electrolytes ( 1 – 4 ) or 1:1 electrolytes ( 5 – 7 ). The molecular structures of 4 and 5· H2O were determined by a single‐crystal X‐ray analysis. In all cases, the NiII atom is tetracoordinated in a distorted square‐planar arrangement with the S2PX, and S2P2 donor set, respectively. The catalytic influence of selected complexes 1 , 3 , 5 , and 6 on graphite oxidation was studied. The results clearly indicated that the presence of the products of thermal degradation processes of the mentioned complexes has impact on the course of graphite oxidation. A decrease in the oxidation start temperatures by about 60–100 °C was observed in the cases of all the tested complexes in comparison with pure graphite.  相似文献   

7.
(dipy)Ni(COD) react with duroquinone (Dch) or anthraquinone (Ach) to yield the complexes (dipy)Ni(η4 -Dch) or (dipy)Ni(η4 -Ach). Chloranil (CA), however, reacts as an oxidant and depending on the temperature (dipy)NiII(CA2-) or following an oxidative addition (dipy)NiII(Cl)(CAH-)(THF) are formed.By substitution of (Cy3P)2Ni(C2H4) the complexes (Cy3P)Ni(η4-Dch) or (Cy3P)2Ni(η4 -Ach) are obtained, whereas a 1,1-coupling of quinone and the coordinated phosphine proceeds during the reaction between p-benzoquinone of chloranil and (Cy3P)2Ni(C2H4). By ESR studies it was demonstrated that with Ni(Cy3P?Ch)2 or Ni(Cy3P?CA)2, resp., complexes are obtained, in which radical anions, which are derived from the product of this 1,1-coupling, are coordinated to low-spin nickel (II). There is a significant difference between (Cy3P)2Ni(C2H4) and the analogous platinum or palladium complexes, which are substituted by p-benzoquinone while an oxidative addition proceeds with chloranil.  相似文献   

8.
Carbon disulfide is cleaved by n-propyldiphenylphosphine and nickel(II) bromide in a one-step process, to form two unprecedented complexes: orange, [Ni(S2C2(PnPrPh2)2)Br(PnPrPh2)]Br⋅CS2 ( 1 ) and purple [Ni{η2-SC(PnPrPh2)2}Br(PnPrPh2)]Br⋅0.5CS2 ( 2 ). Orange ( 1 ) contains a dithiolene-related ligand that results from carbon–carbon bond formation, while purple ( 2 ) contains a remarkable ligand in which two n-propyldiphenylphosphine molecules have added to a carbon atom of a CS unit that is coordinated to nickel.  相似文献   

9.
Six complexes, M(HL)2 · nH2O (M=Co, Ni and Fe; n=4) with two ligands, 2-carboxy-benzaldehydebenzoylhydrazone (H2L1) and 2-carboxybenzaldehyde-(4′-methoxy)benzoylhydrazone (H2L2), have been synthesized and characterized on the basis of elemental analyses, molar conductivities, i.r. spectra and thermal analyses. In addition, the suppression ratio for O2- (a) and the suppression ratio for OH· (b) were determined with a 72 spectrophotometer. The 50% inhibition [IC50 (a) and IC50 (b)] of the complexes were studied. This study demonstrated that the complexes have activity in the suppression of O2- (a) and OH· (b). In general, the antioxidative activities increased as the concentration of these complexes increased up to a selected extent. The complexes exhibit more effective antioxidants than the ligands and the series of the ligand (H2L2) are better than the series of the ligand (H2L1) do.  相似文献   

10.
Two sets of nickel(II) complexes of a series of tetradentate NSNO ligands were synthesized and isolated in their pure form. All these complexes, formulated as [Ni(L)Cl]2 and [Ni(L)(N3)]2 [HL = pyridylthioazophenols], were characterized using physicochemical and spectroscopic tools. The solid-state structures of two complexes (1a and 2a) were established by X-ray crystallography. The geometry about the nickel ion of the complexes is octahedral and the complexes are dimeric in nature. In 1, two Ni(II) ions are bridged by two Cl anions while in 2 they are bridged by two azide ions in a μ-1,1-bridging fashion.  相似文献   

11.
Summary.  Six mixed-ligand Nickel(II) and Copper(II) chelates with square-planar geometry of the formula [Ni/Cu(O-O)(S-tmpn)]B(C6H5)4 were prepared, where O-O represents acetylacetonate, tropolonate, or hinokitiolate and S-tmpn is (S)-tetramethyl-1,2-propanediamine. The compounds were investigated with respect to their function as receptor for unprotected amino acids, taking advantage of their high solubilities in non-polar organic solvents. In liquid-liquid extraction experiments between a 1,2-dichloroethane phase containing the metal chelates and an aqueous phase containing amino acids (rac-phenylglycine, rac-phenylalanine, or rac-tryptophan), the nickel(II) chelates effectively extracted amino acids from the aqueous phases under neutral conditions, forming octahedral ternary chelates. Received February 19, 2001. Accepted April 2, 2001  相似文献   

12.
The C−F bond activation of pentafluoropyridine and 2,3,5,6-tetrafluoropyridine at [Ni(cod)2] (cod=1,5-cyclooctadiene) in the presence of the phosphine PPh2(Ind) (Ind=3-methyl-2-indolyl) led to the formation of the nickel(II) fluorido bis(phosphine) complexes trans-[Ni(F)(2-C5NF4){PPh2(Ind)}2] and trans-[Ni(F)(2-C5HNF3){PPh2(Ind)}2]. The complexes are characterized by the presence of intramolecular hydrogen bonds between the NH group of the phosphine ligands and the fluorido ligand. Stochiometric model reactions of nickel(II) fluorido complexes with PhB(OH)2 revealed that the former can be considered as intermediates in Suzuki–Miyaura cross coupling reactions. Catalytic experiments were attempted using 10 mol-% of trans-[Ni(F)(2-C5NF4){PPh2(Ind)}2] as catalyst and the activities of the PPh2(Ind) complex were compared to the ones of an analogous nickel(II) fluorido complex, bearing PPh3 instead of PPh2(Ind) as ligands. The latter exhibited a somewhat lower catalytic activity suggesting a slight influence of the H-bonds in the outer coordination sphere.  相似文献   

13.

1:1 and 1:2 nickel(II) complexes of bis(benzimidazole-2-ylmethyl)amine (bbma) bis(benzimidazole-2-ylmethyl)sulfide (bbms), bis(benzimidazole-2-ylethyl)sulfide (bbes) and diethylenetriamine (dien) were prepared and their spectroscopic and redox behavior studied. The stereochemistry of nickel(II) complexes with bbma, bbes, bbms and dien have been analyzed, confirming facial configuration for Ni(bbma)2+ 2 Cu(bbma)2+ 2 and meridional geometry for Ni(dien)2+ 2 and Cu(dien)2+ 2. The factors favoring facial or meridional coordination of these ligands have been studied. For example, the π-bonding ability of benzimidazole at the termini of the tridentate ligand facilitate the facial geometry for the complexes, and the strong σ-donor ability of amine at the termini of the dien ligand favors meridionally coordinated complexes. The electronic spectral results indicate that the ligand field strength of the complexes decreases in the following order: Ni(bbms)2+ > Ni(bbes)2+ > Ni(bbma)2+ > Ni(dien)2+, this decreasing order being consistent with the redox potential obtained for these complexes.  相似文献   

14.
The redox reactions of thiosulfate with four iron(III) complexes having phenolate-amide-amine coordination, FeIII(L){L = 1,2-bis(2-hydroxybenzamido)ethane, L1; 1,3-bis(2-hydroxybenzamido)propane, L2; 1,5-bis(2-hydroxybenzamido)3-azapentane, L3; and 1,8-bis(2-hydroxybenzamido)3,6-diazaoctane, L4} have been investigated in 10% v/v MeOH + H2O and I = 0.3 mol dm−3. At constant pH (~ 4.8) and under pseudo-first order conditions of [S2O 3 2− ] the reaction obeyed the rate law : − d[FeIII(L)]/dt = k obs [FeIII(L)] + k obs where k obs denotes the observed rate constant of thiosulfate decomposition; k obs = a[S2O 3 2− ] + b[S2O 3 2− ] T 2 is valid for all the complexes, particularly at pH < 6, while k obs = [H+][S2O 3 2− ] T 2 is consistent with the rate law for thiosulfate decomposition proposed earlier. The rate data (k obs) were analysed on the basis of the reactivities of various species of FeIII(L) generated by the equilibrium protonation of the sec-NH of dien and trien spacer units resulting in the ring opening (for [FeIII(L3/L4)]), and acid base equilibrium of the aqua ligand bound to the iron(III) centre ([FeIII(L)(OH2) n ]). The redox activities, both for second and third order paths, show the ligand dependencies : L4<L3<L1<L2 conforming to the fact that the complexes tend to be less susceptible to electron transfer from S2O 3 2− with (i) the increase of the number of chelate rings, (ii) the decrease of overall charge, and (iii) the decrease of ring size offered by the amine moiety (from six membered to five membered one as for [FeIII(L1/L2)(OH2)2]+. There was no evidence for the formation of inner sphere thiosulfato complex, the possibility of the formation of the outer sphere ion-pairs, [Fe(L/HL)(OH2)n +/2+, S2O 3 2− ] with low equilibrium constant value may not be excluded. In view of this, the outer sphere electron transfer (ET) mechanism is the most likely possibility.  相似文献   

15.
The diamagnetic nickel mononitrosyl complexes (TmR)Ni(NO) (R = But, p-Tol) and (BmR)Ni(PPh3)(NO) (R = Me, But) have been readily prepared from Ni(PPh3)2(NO)Br and the appropriate Na(TmR) or Na(BmR) reagents, respectively. These species constitute the first nickel nitrosyl complexes supported by these ligand systems. An X-ray diffraction study of (Tmp-Tol)Ni(NO) confirmed its pseudo-tetrahedral geometry and the presence of a nearly linear nitrosyl ligand. In contrast, (BmMe)Ni(PPh3)(NO) can be best described as having a trigonal pyramidal geometry, a spatial arrangement unprecedented in nickel nitrosyl chemistry, which is facilitated by the disposition of the BmMe ligand and the presence of a weak intramolecular Ni?H–B interaction opposite to the apical triphenylphosphine ligand.  相似文献   

16.
Linear and nonlinear optical properties of two new nickel(diimine)(dithiolate) complexes, nickel(4,4′‐dinitro2,2′‐bipyridyl)(tfd), Ni(NO2bipy)(tfd) , (tfd = 1,2‐trifluoromethylethene‐1,2‐dithiolate) and nickel(4,7‐diphenyl‐1,10‐phenathroline)(tfd), Ni(dpphen)(tfd) are reported. Ni(NO2bipy)(tfd) has a potent electronic acceptor substituted on the diimine ligand and exhibits an enhanced molecular first hyperpolarizability (β0 = ?31 × 10?30 esu), which is more than three times greater than that (β0 = ?10 × 10?30 esu) of Ni(dpphen)(tfd). Ni(NO2bipy)(tfd) also possesses the longest absorption wavelength, the largest solvatochromic shift, and one of the largest dipole moment changes (‐16 debye from ground to excited state) among nickel(diimine)(dithiolate) complexes. Crystal X‐ray structure of Ni(NO2bipy)(tfd) is used to compared the π‐bonding structure of central (N=C‐C=N)Ni(S‐C=C‐S) unit with that of previously known nickel(4,4′‐bis(butyloxycarbonyl)‐2,2′‐bipyridyl)(tfd), Ni(CO2Bubipy)(tfd).  相似文献   

17.
Investigation on the Alkylation of Bis-Stilbendithiolato Complexes of NiII, PdII, and PtII Alkylation reactions of co-ordinated ligands of the type of ethylene-bisthiol R2S2C22-proceed different depending on the substituents R. The neutral complexes isolated by a alkylation of the nickel bis-chelates (R = phenyl) according to Schrauzer and Rabinowitz and formulated by these authors as mixed ligand chelates of dithiolate and diether, were identified by us as complexes of the monoethers of the ligand. These nickel (II) complexes of the mono-ethers can not be alkylated further by alkyliodides. Oxidative coupling of two ligands yields disulfides which have been identified by mass spectroscopy thus indicating the original position of attack of the alkylating reagent. The formation of bis-monether complexes is reflected by the different charges on the S atoms of the model complex [Ni(CH3S2C2H2)(S2C2H2)]- obtained from EHT and CNDO calculations. Both possible stereo-isomers have been isolated of the bis-methylmonether complex of Pt(II). Trans-[M((CH3)(S2C2Ph2))2] (M = Ni(II), Pd(II)) form CH2Cl2 adducts. By treating the Ni-bis complexes of the monoalkylthioethers with iodine polyiodides are prepared. Binuclear Pd(II) complexes of composition [Pd2((R)(S2C2Ph2))2Cl2] could be prepared by metal exchange.  相似文献   

18.
Complexing processes in MII-N-diisopropoxythiophosphorylthiobenzamide binary systems (M = Co, Ni, Cu) in metal(II) hexacyanoferrate(II) gelatin-immobilized matrices upon contact with aqueous–alkaline (pH = 12.0 ± 0.1) solutions of organic compounds have been studied. It has been shown that, in CoII and CuII, the initial act of complexing involves destruction of the CoII and CuII hexacyanoferrates(II) by OH ions, leading to formation of the corresponding hydroxides which react with the ligand indicated. In the both systems, successive addition of two ligand molecules per M(OH)2 fragment occurs and [MB(OH)(OH2)] and [MB2] coordination compounds are formed (B-a singly deprotonated ligand form). In the NiII-N-diisopropoxythiophosphorylthiobenzamide system, the formation of three complexes, (Ni2BOH)2[Fe(CN)6], [NiB(OH)(OH2)] and [NiB2] occurs.  相似文献   

19.
Summary Reactions of glyoxal bis(morpholineN-thiohydrazone), H2gbmth, with NiCl2·6H2O, Ni(OAc)2·4H2O, Ni(acac)2· H2O, CuCl2·2H2O, Cu(OAc)2·H2O, Cu(acac)2, CoCl2· 6H2O, Co(OAc)2·4H2O and Co(acac)2·2H2O yield complexes of the type [M(gbmth)], [M=NiII, CuII or CoII]. Diacetyl reacts with morpholineN-thiohydrazide in the presence of nickel salts to yield [NiII(dbmth)], [NiII(dmth)(OAc)]H2O and [NiII(Hdmth)(NH3)Cl2] involving N2S2 and NSO donor ligands. Copper and cobalt complexes of N2S2 and NSO donor ligands with compositions [CuII(dbmth)], [CoII(dbmth)]·4H2O and [CoII(H2dbmth)]Cl2, have been isolated. The compounds have been characterised by elemental analyses, magnetic moments, molar conductance values and spectroscopic (electronic and infrared) data.  相似文献   

20.
Summary Nickel(II) and copper(II) complexes of 2,5-dimethyl-1,3,4-thiadiazole Ni(DTZ)X2 (X = Cl or Br) and M(DTZ)2X2 (M = Ni, X = 1 or N03; M = Cu, X = Cl, Br or NO3) have been prepared. The i.r. spectra show that in all the complexes the ligand is N,N- or N-bonded to the metal while the sulfur atom does not participate in coordination, and that the halide ions are coordinated forming terminal M-X bonds. The NO 3 - group is coordinated in both the nitrato complexes. Magnetic moments of 3.07–3.29 B.M. for the nickel(II) and 1.86–1.92 B.M. for the copper(II) complexes were observed. The Ni(DTZ)X2 complexes have a pseudo-tetrahedral [N2X2] coordination with N,N-bridging ligand molecules. The Ni(DTZ)2X2 and Cu(DTZ)2X2 complexes, with predominantly monodentate ligand, involve six-coordinate metal atoms with strong equatorial [N2X2] bonds and weaker axial bonds.Author to whom all correspondence should be directed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号