首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 485 毫秒
1.
The fabrication of a functional multilayer system with a gradually hierarchical order formed by individual titania thin films of different porosity is investigated. The porous or sponge-like nanostructures are fabricated using a diblock copolymer assisted sol–gel process. The successive spin-coating of the sol–gel solution onto the silicon substrate deposits a thin polymer nanocomposite film which is transformed to purely anatase titania nanostructures via calcination. In total, this procedure is repeated layer by layer for three times. This layer-by-layer approach is monitored with grazing incidence small-angle X-ray scattering (GISAXS) after each fabrication step. The GISAXS investigation is complemented in real space with a scanning electron microscopy characterization of the respective preparation stages. From the characterization, a porous titania multilayer system with gradually structured levels is clearly identified.  相似文献   

2.
Four different kinds of diamond-like carbon (DLC) coating morphologies on the surface of silicon films were prepared directly on a copper foil by using radio frequency plasma-enhanced chemical vapor deposition at 200 °C. A thin double layer film consisting of DLC (60 nm) and silicon film (250 nm) was fabricated for use as the anode material of lithium secondary batteries, and its electrochemical performance was also examined with special attention being paid to the surface coverage of the DLC film. The full coverage of silicon by the DLC film resulted in poor capacity due to the ensuing low reactivity with the lithium ions. On the other hand, the partial coating of the DLC film on the silicon film not only reduced the capacity fading, but also increased the discharge capacity during the charge/discharge cycles. These results indicated that the good dispersion of the DLC coating, obtained by using a smaller coating sector on the silicon film, improved the integrity of the electrode structure, thus giving higher capacities and reduced capacity fading.  相似文献   

3.
Gold-capped silicon nanocolumns regularly distributed over silicon substrate were obtained. The columns length was roughly 100?nm; their deviation from perpendicular axis was less than 2°. The diameter of the columns was of the order of 10?nm or below of that. The proposed procedure of nanostructuring included the following main steps: deposition of aluminum thin layer (100?C500?nm) by magnetron sputtering on (100) oriented Si wafers; formation of porous self-ordered alumina structures by electrochemical anodizing of the Al film in oxalic acid; electroless inversion of Au in alumina pores; and reactive ion etching. The obtained Si?CAu structures are of importance as the platforms for biosensing applications, while the gold-free structures are of interest in photovoltaics.  相似文献   

4.
To improve the electrochemical performances of Si thin film anodes for lithium rechargeable batteries, fullerene thin films are prepared by plasma-assisted evaporation methods to be used as coating materials. Analyses via Raman and X-ray photoelectron spectroscopy indicate that amorphous polymeric films originated from fullerene are formed on the surface of the silicon thin film. The electrochemical performance of these fullerene-coated silicon thin film as an anode material for rechargeable lithium batteries has been investigated by cyclic voltammetry, charge/discharge tests, and electrochemical impedance spectroscopy. The fullerene-coated Si thin films demonstrated a high specific capacity of above 3,000 mAh g−1 as well as good capacity retention for 40 cycles. In comparison with bare silicon anodes, the fullerene-coated silicon thin film showed superior and stable cycle performance which can be attributed to the fullerene coating layer which enhances the Li-ion kinetic property at the electrode/electrolyte interface.  相似文献   

5.
Here we report on the fabrication and characterization of ultra-thin nanocomposite layers used as gate dielectric in low-voltage and high-performance flexible organic thin film transistors (oTFTs). Reactive sputtered zirconia layers were deposited with low thermal exposure of the substrate and the resulting porous oxide films with high leakage currents were spin-coated with an additional layer of poly-α-methylstyrene (PαMS). After this treatment a strong improvement of the oTFT performance could be observed; leakage currents could be eliminated almost completely. In ellipsometric studies a higher refractive index of the ZrO2/PαMS layers compared to the “as sputtered” zirconia films could be detected without a significant enhancement of the film thickness. Atomic force microscopy (AFM) measurements of the surface topography clearly showed a surface smoothing after the PαMS coating. Further studies with X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) also indicated that the polymer definitely did not form an extra layer. The polymer chains rather (self-)assemble in the nano-scaled interspaces of the porous oxide film giving an oxide–polymer “nanocomposite” with a high oxide filling grade resulting in high dielectric constants larger than 15. The dielectric strength of more than 1 MV cm−1 is in good accordance with the polymer-filled interspaces.  相似文献   

6.

Gold-capped silicon nanocolumns regularly distributed over silicon substrate were obtained. The columns length was roughly 100 nm; their deviation from perpendicular axis was less than 2°. The diameter of the columns was of the order of 10 nm or below of that. The proposed procedure of nanostructuring included the following main steps: deposition of aluminum thin layer (100–500 nm) by magnetron sputtering on (100) oriented Si wafers; formation of porous self-ordered alumina structures by electrochemical anodizing of the Al film in oxalic acid; electroless inversion of Au in alumina pores; and reactive ion etching. The obtained Si–Au structures are of importance as the platforms for biosensing applications, while the gold-free structures are of interest in photovoltaics.

  相似文献   

7.
Via electroless metal deposition, well-defined silver dendrites and thin porous silicon (por-Si) layers are simultaneously prepared in ammonia fluoride solution containing AgNO3 at 50 °C. A self-assembled localized microscopic electrochemical cell model and a diffusion-limited aggregation mode are used to explain the growth of silver dendrites. The formation of silver dendritic nanostructures derives from the continuous aggregation growth of small particles on a layer of silver nanoparticles or nanoclusters (Volmer-Weber layer). Thin and homogeneous nanostructure por-Si layers display visible light-emission properties at room temperature. The investigation of the surface-enhanced Raman scattering (SERS) reveals that the film of silver dendrites on por-Si is an excellent substrate with significant enhancement effect.  相似文献   

8.
With a view to developing an economical and elegant biosensor chip, we compared the efficiencies of biosensors that use gold-coated single-crystal silicon and amorphous glass substrates. The reflectivity of light over a wide range of wavelengths was higher from gold layer coated single-crystal silicon substrates than from glass substrates. Furthermore, the efficiency of reflection from gold layers of two different thicknesses was examined. The thicker gold layer (100 nm) on the single-crystal silicon showed a higher reflectivity than the thinner gold film (10 nm). The formation of a nucleic acid duplex and aptamer–ligand interactions were evaluated on these gold layers, and a crystalline silicon substrate coated with the 100-nm-thick gold layer is proposed as an alternative substrate for studies of interactions of biomolecules.  相似文献   

9.
A simple and cost-effective method has been developed for the fabrication of microtubular solid oxide fuel cells (MT-SOFCs). Highly asymmetric electrolyte hollow fibers composed of a thin dense skin layer and a thick porous substrate are first prepared by a modified phase inversion/sintering technique. The porous substrate is then formed into the anode by deposition of a Ni catalyst via an electroless plating method inside the pores while the thin dense skin layer serves directly as the electrolyte film of ...  相似文献   

10.
提出了一种简单而方便的微管式固体氧化物燃料电池(MT-SOFCs)的制备新方法.首先应用改进相转化-烧结技术制备由致密电解质表皮薄层和多孔支撑层构成的高度非对称结构电解质中空纤维膜(微管),在电解质中空纤维膜的多孔支撑层内通过化学镀法沉积Ni催化剂作为电池阳极,而致密电解质表皮层直接作为电解质膜,在电解质微管外表面用浆料涂层法制备电池的多孔阴极,烧结后即得到完整的MT-SOFC.应用该方法制备了Ni-YSZ|YSZ|LSCF微管式电池,该电池以H2/空气作原料气,在800℃时最大输出功率达到159.6mWcm-2.  相似文献   

11.
 The characteristics of the interface microstructures between a CVD diamond film and the silicon substrate have been studied by transmission electron microscopy and electron energy loss spectroscopy. The investigations are performed on plan-view TEM specimens which were intentionally thinned only from the film surface side allowing the overall microstructural features of the interface to be studied. A prominent interfacial layer with amorphous-like features has been directly observed for CVD diamond films that shows a highly twinned defective diamond surface morphology. Similar interfacial layers have also been observed on films with a <100> growth texture but having the {100} crystal faces randomly oriented on the silicon substrate. These interfacial layers have been unambiguously identified as diamond phase carbon by both electron diffraction and electron energy loss spectroscopy. For the CVD diamond films that exhibit heteroepitaxial growth features, with the {100} crystal faces aligned crystallographically on the silicon substrate, such an interfacial layer was not observed. This is consistent with the expectation that the epitaxial growth of CVD diamond films requires diamond crystals to directly nucleate and grow on the substrate surface or on an epitaxial interface layer that has a small lattice misfit to both the substrate and the thin film material.  相似文献   

12.
Porous SiO2 films were successfully deposited on silicon substrates by a modified base-catalyzed Sol-Gel process (MBCP) containing polyvinyl alcohol (PVA). The process conditions, such as the gelation time, the synthesis temperature, the stabilizing agent of the precursor solution and the spin coating speed, the heat-treatment, the annealing temperature of the film on the microstructure and porosity of porous SiO2 films were systematically investigated by SEM, XRD and ellipsometry techniques. This study provides a novel preparation technique for the porous SiO2 film. Using this process, the resultant film can reach a thickness of 3.6 m for one layer, a porosity of 25–50%, a low thermal conductivity of 0.11 W/m·K. This film will be used as a low dielectric layer, an thermal-insulating layer and a low refractive index layer.  相似文献   

13.
硅基超薄多孔氧化铝膜的制备   总被引:2,自引:0,他引:2  
将二次阳极氧化法应用于硅基铝膜的制备, 在草酸溶液中得到了厚度可控的硅基超薄多孔氧化铝膜(PAM), 厚度小于100 nm. 实验中记录了氧化电流随时间的实时变化曲线, 发现硅衬底的氧化电流在大幅下降前有一小幅波动. 对应于Al/Si界面的氧化过程中, 孔洞底部之间的残留铝岛被优先氧化, 可将此作为终止铝氧化的标志. 扫描电镜(SEM)观察表明, 二次氧化提高了孔洞分布的均匀性, 使得孔在一定的区域内呈现有序六角分布.这种模板可进一步用于硅基纳米器件和纳米结构的制备.  相似文献   

14.
Yttria-stabilized zirconia (YSZ) micro tubular electrolyte membranes for solid oxide fuel cells (SOFCs) were prepared via the combined wet phase inversion and sintering technique. The as-derived YSZ mi- cro tubes consist of a thin dense skin layer and a thick porous layer that can serve as the electrode of fuel cells. The dense and the porous electrolyte layers have the thickness of 3-5 μm and 70-90 μm, respectively, while the inner surface porosity of the porous layer is higher than 28.1%. The two layers are perfectly integrated together to preclude the crack or flake of electrolyte film from the electrode. The presented method possesses distinct advantages such as technological simplicity, low cost and high reliability, and thus provides a new route for the preparation of micro tubular SOFCs.  相似文献   

15.
Silicon containing materials have traditionally been used in microelectronic fabrication. Semi-conductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the individual circuit elements forming an integrated circuit. These interconnect levels are typically separated by an insulating or dielectric film. Previously, a silicon oxide film was the most commonly used material for such dielectric films having dielectric constants (k) near 4.0. However, as the feature size is continuously scaling down, the relatively high k of such silicon oxide films became inadequate to provide efficient electrical insulation. As such, there has been an increasing market demand for materials with even lower dielectric constant for Interlayer Dielectric (ILD) applications, yet retaining thermal and mechanical integrity. We wish to report here our investigations on the preparation of ultra-low k ILD materials using a sacrificial approach whereby organic groups are burnt out to generate low k porous ORMOSIL films. We have been able to prepare a variety of organically modified silicone resins leading to highly microporous thin films, exhibiting ultra-low k from 1.80 to 2.87, and good to high modulus, 1.5 to 5.5 GPa. Structure property influences on porosity, dielectric constant and modulus will be discussed.  相似文献   

16.
PZT films with different microstructure and Zr:Ti ratios were fabricated on ITO/glass and platinized silicon wafer substrates by dip-coating. A dense film of 2% porosity and a porous film of 19% porosity were obtained by repetition of thin and thick coatings, respectively. Development of pores during heating the film was examined and heating process factors were investigated. In the film fabricated on ITO/glass substrates, an existence of non-perovskite and low permittivity layer was confirmed by measurement of film thickness dependence of the dielectric constant. Among the films studied, the film with molar composition of Ti:Zr = 5:5 exhibited the largest dielectric constant and apparent piezoelectric coefficient, d 33, though the values were small. Apparent piezoelectric coefficients of d 33 and g 33 of the porous films were larger than those of the dense films.  相似文献   

17.
Thin film technology takes more and more importance in the development of biomedical devices dedicated to functional neurostimulation. Our research about the design of implant neurostimulating electrode is oriented toward thin film cuff electrodes based on a polyimide substrate covered by a chromium/gold/Pt film. The chromium/gold sputtered film serves as adhesion layer and current collector whereas platinum acts as an electrochemical actuator. The electrode surface has been designed to obey safe stimulation criteria (i.e. chemically inert noble metal, low electrode-electrolyte impedance, high electrochemical reversibility, high corrosion stability). The electrochemical behaviour of such platinum electrodes has been assessed and compared to a foil of platinum. Extensive in vitro characterisations of the both electrode types were carried out using AFM, SEM and electrochemical techniques. The role of enhanced surface roughness enabling high double layer capacitances to be achieved was clearly highlighted. The obtained results are discussed, with particular reference to thin film electrodes stability under in vitro electrical stimulation in NaCl 0.9% (physiological serum). Therefore, these thin film devices showed reversible PtOH formation and decomposition making them potentially attractive for the fabrication of implant stimulation cuff electrodes.  相似文献   

18.
Dense thin nanostructured films of cadmium sulfide CdS obtained by chemical deposition from aqueous solutions are strongly bound to a substrate due to the formation of cadmium hydroxide Cd(OH)2 in the system. By X-ray reflectometry and grazing incidence diffraction it is found that at the beginning of the deposition a dense Cd(OH)2/SiO2 layer is produced on the surface of a silicon or glass substrate. This layer is formed through the atomic-layer adsorption of crystalline 1–3 nm thick Cd(OH)2 film by the oxygencontaining substrate surface. During sulfidation of this cadmium-containing substrate layer, a surface nucleation layer of CdS/Cd(OH)2/SiO2 forms, which provides the growth, denseness, and strong adhesion to the substrate of nanostructured CdS film with a disordered structure. According to the obtained experimental data, a “hydroxide scheme” of film deposition is confirmed and refined, and the stages of CdS nanofilm formation are determined.  相似文献   

19.
In this paper, the mass transfer coefficients for trichloroethylene (TCE), toluene (TOL) and dimethyl sulfide (DMS) are experimentally determined for different porous and composite membranes. For polypropylene/polyvinylidenedifluoride porous layer/thin film polydimethylsiloxane dense layer composite membranes, membrane mass transfer coefficients are 2.55E−03, 2.82E−03 and 2.90E−03 m/s for TCE, TOL and DMS in N2 at 30.0 ± 0.1 °C, respectively. For polyester/polyacrylonitrile porous layer/thin film polydimethylsiloxane dense layer composite membranes, they are higher, namely 4.28E−03, 4.55E−03 and 4.81E−03 m/s for TCE, TOL and DMS in N2 at 30.0 ± 0.1 °C, respectively. Analysis of the contribution of the dense layer of both composite membranes to the total membrane resistance for mass transfer, showed that this contribution was small for both composite membranes. The higher mass transfer coefficients of the thin film polydimethylsiloxane composite membranes from this study in comparison to others from the literature are primarily due to improvement of the mass transfer characteristics of the porous layer. Analysis of the mass transfer characteristics of the different porous layers of which the total porous layer is composed, showed that the contribution of the porous “backing” layer for mechanical support can be substantial in comparison to the porous layer in contact with the dense layer.  相似文献   

20.
We produce uniform mesoporous single- and multilayers on 4 in. p-type Ge wafers by means of electrochemical etching in highly concentrated HF-based electrolytes. Pore formation by anodic etching in germanium leads to a constant dissolution of the already formed porous layer plus substrate. Alternating the etching bias from anodic to cathodic bias enhances the passivation of the pore walls and substrate. The formation of porous multilayers is possible, since the starting layer is not dissolved during the formation of the separation layer. We report on the production of mesoporous double layers in Ge with different porosities. The change in the porosity of the porous layers is achieved by varying the anodic etching current and the HF concentration of the electrolyte. Porosities in the range of 25–65% are obtained for etching current densities of 1–15 mA cm?2 with the specific resistivity of the Ge substrates lying in the (0.020–0.032) Ω cm range and electrolyte HF concentrations in the range of 35–50 wt.%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号