首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
Introduction Cytochrome c (cyt c) is probably the most thor-oughly studied redox protein. It contains one Fe(III) redox center located in a haem unit which is approxi-mately spherical shape with 3.4 nm diameter and 12384 Dalton molecular weight. On metal electrode surfaces it usually shows a short lived, transient response. Many factors can impede direct electron transfer between electrodes and cyt. c, including adsorption onto elec-trode surfaces of macromolecular species (impurities) or de…  相似文献   

2.
采用超声辅助湿法合成的方法制备了羟基磷灰石与碳纳米管(HAp/MWNT)无机复合纳米材料,并将其修饰到玻碳电极表面上。研究了细胞色素c(Cyt c)在该复合纳米材料修饰电极表面上的电化学行为。实验结果表明,复合修饰材料对细胞色素c有很好的催化作用,其氧化还原峰峰差(ΔEp)为78 mV,式电位为15mV。在6.0×10-7-5.0×10-5mol/L浓度范围内,Cyt c的峰电流与其浓度呈良好的线性关系,其检测下限为3.0×10-7mol/L。关键词:细胞色素c;羟基磷灰石;碳纳米管;HAp/MWNT复合材料  相似文献   

3.
The aim of the present paper is to characterize a cross‐linked horse heart cytochrome c (HHC) film on cysteamine‐modified gold electrodes. The HHC film was deposited using 1‐ethyl‐3‐(3‐dimethylaminopropyl)‐carbodiimide (EDC) as a coupling agent. Attenuated total reflection infrared (ATR‐IR) spectroscopic analyses were performed to characterize the newly formed surface on a qualitative and conformational level. The film thickness was measured using a noncontact optical surface profiler, while quantitative data and information on the heterogeneity of the film were obtained by means of synchrotron radiation X‐ray micro fluorescence (SR micro‐XRF). Results indicate that, in addition to electrochemical studies, spectroscopic analysis methods are essential to gain insight in the effect of immobilization strategies on protein conformations. The latter is of relevance in the development and optimization of biosensors. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
To compare the properties of hyperbranched polymers with linear oligomers for preparing organic‐inorganic hybrids, hyperbranched aliphatic polyester (BoltornTM H20) and linear polyester hexa‐acrylate (EB830) were selected as organic components for preparing UV‐curable transparent hybrid materials using 3‐(trimethoxysilyl) propylmethacrylate as a coupling agent via a sol‐gel process. The prehydrolyzed product of tetraethoxysilane was used as an inorganic component. The effects of inorganic content on the morphologies, thermal behaviors, photopolymerizaiton kinetics and mechanical properties of the hybrids were investigated. The results show that for hyperbranched polyester‐based hybrids, the organic phase shows much better compatibility with inorganic phase even at high inorganic component content due to its special spheral shape and plenty of functional end groups, compared with linear EB830‐based hybrids. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
采用自组装方法将壳聚糖-纳米金(Chi-Nano Au)修饰到金(Au)电极上,并经进一步自组装细胞色素c(Cyt c),制得自组装膜电极Cyt c/Chi-Nano Au/Au.测定了自组装膜电极的循环伏安曲线(CV)及稳定性.结果表明,利用自组装膜电极Chi-Nano Au/Au可以有效地固定Cyt c,并实现直接电子转移反应.Cyt c在0.13~0.28V(vs Ag/AgCl)之间显示一对明显的可逆氧化还原峰;峰电流与扫描速度呈现良好的线性关系,线性方程为Ipc=0.063 64+0.003 51υ,线性相关系数为r=0.997 2,这表明该电极过程受吸附控制.此外,所制备的膜电极稳定性良好.  相似文献   

6.
Liquid‐crystalline (LC) hybrid polymers with functionalized silsesquioxanes with various proportions of LC monomer were synthesized by the reaction of polyhedral oligomeric silsesquioxane (POSS) macromonomer with methacrylate monomer having an LC moiety under common free‐radical conditions. The obtained LC hybrid polymers were soluble in common solvents such as tetrahydrofuran, toluene, and chloroform, and their structures were characterized with Fourier transform infrared, 1H NMR, and 29Si NMR. The thermal stability of the hybrid polymers was increased with an increasing ratio of POSS moieties as the inorganic part. Because of the steric hindrance caused by the bulkiness of the POSS macromonomer, the number‐average molecular weight of the hybrid polymers gradually decreased as the molar percentage of POSS in the feed increased. Their liquid crystallinities were very dependent on the POSS segments of the hybrid polymers behaving as hard, compact components. The hybrid polymer with 90 mol % LC moiety (Cube‐LC90) showed liquid crystallinity, larger glass‐transition temperatures, and better stability with respect to the LC homopolymer. The results of differential scanning calorimetry and optical polarizing microscopy showed that Cube‐LC90 had a smectic‐mesophase‐like fine‐grained texture. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4035–4043, 2001  相似文献   

7.
Ying Li  Jing Li  Song-Qin Liu 《Talanta》2010,82(4):1164-1169
We have successfully constructed a novel gold film with open interconnected macroporous walls of nanoparticles by combining the hydrogen bubble dynamic template synthesis with galvanic replacement reaction. After modified by a self-assembled monolayer (SAM) of 11-mercaptoundecanoic acid (MUA), the three-dimensionally (3D) interconnected macroporous Au film has been used as a biocompatible substrate for the immobilization of cytochrome c. The morphology, structure and electrochemical features of the modified and unmodified macroporous Au films were characterized by field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results reveal that the resultant films had a large electroactive surface area for high protein loading, enhanced electron transfer of cytochrome c, retained electrochemical activity, good stability and repeatability. And the excellent electrochemical behaviors could be attributed to the hierarchical structure of the macroporous Au film constructed by nanoparticles.  相似文献   

8.
The distribution of ZrO2 and phosphotungstic acid (PTA) in a matrix of sulfonated polyether ketone was investigated by anomalous small‐angle X‐ray scattering (ASAXS). Scattering curves were obtained using X‐ray energies near the Zr and W absorption edges, allowing the independent analysis of the distribution of ZrO2 and PTA in the sample. The interaction between both inorganic components improved their dispersion considerably when compared with films containing just one of the additives. The synergism was correlated to previous investigations concerning proton conductivity and permeability of the membranes developed for direct methanol fuel cell. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2981–2992, 2005  相似文献   

9.
Organic–inorganic hybrid gels containing Si‐vinylene units have been synthesized by a hydrosilylation reaction of tri‐ or tetra‐ethynyl aryl compounds, 1,3,5‐triethynylbenzene (TEB), 3,3′,5,5′‐tetraethynylbiphenyl (TEBP), or tetrakis(4‐ethynylphenyl)methane (TEPM), and bisdimethylsilyl compounds, 1,1,3,3‐tetramethyldisiloxane (TMDS) or 1,4‐bisdimetylsilylbenzene (BDMSB), in toluene. Network structure of the resulting gels was quantitatively characterized by a scanning microscopic light scattering. The reactions yielded the gels having homogeneous network structure of 1.5–2.9 nm mesh size under the monomer concentrations that were relatively higher than the critical gelation concentration. The gels obtained from TEB showed broad absorption in the range from 340 to 370 nm, and emission in the range from 440 to 490 nm. The TEB–BDMSB gels showed remarkable red shift of the emission in comparison with that of the corresponding reaction solutions derived from the network formed by σ–π conjugation. The TEPM–TMDS, BDMSB gels exited by 280 nm showed not only the emission peak at around 360 nm derived from TEPM, but the broad peak at around 420 nm, which should be derived from interaction between phenyl groups of TEPM in the gels. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1360–1368  相似文献   

10.
Organic–inorganic hybrid electrolytes based on PEO‐NaTFSI‐ionic liquid (HMIMTFSI)‐silica (in situ production via sol gel process) are being reported in this article. The variation in conductivity with ionic liquid (IL) addition has been explained on the basis of number of free TFSI anions evaluated using ATR‐IR data. The deconvolution of the IR spectra of these hybrid electrolytes has given evidence of ion‐pair formation which has been compared vis‐á‐vis the conductivity variation. The hybrid electrolyte with maximum conductivity comprises the highest number of free imide ions and has lowest glass transition temperature. FESEM has displayed a porous and layered surface morphology with dispersed silica nanoparticles. In addition, the optimized hybrid electrolyte has been compared with 5 wt% (limit of mechanical stability) ex situ silica added composite where the temperature cycling of conductivity has shown that the ex situ dispersed hybrid electrolytes do not retrace their conductivity path contrary to the in situ prepared hybrid electrolytes. This behavior has been explained to be due to the hindrance offered by the ex situ added silica in the recrystallization kinetics of PEO. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 207–218  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号