首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self-organized Ge islands grown on patterned Si(001) substrates have been investigated. Selective epitaxial growth (SEG) of Si is carried out with gas-source molecular beam epitaxy to form Si stripe mesas followed by subsequent Ge island growth. Self-aligned Ge islands with regular spacing are formed on the <110>-oriented ridges of the Si mesas. The regular spacing is driven by the repulsive interaction between the neighbor islands through the substrates. A mono-modal distribution of the islands has been observed on the ridges of the Si mesas. The spatial confinement as well as the preferential nucleation is believed to be the mechanism of this alignment of the self-organized Ge islands. Received: 16 July 1999 / Accepted: 6 August 1999 / Published online: 24 March 2000  相似文献   

2.
The results of the structural and morphological studies of Ge growth on a Si(111) surface at the initial stages of epitaxy by means of scanning tunneling microscopy and high-resolution transmission electron microscopy are presented. Epitaxy of Ge has been performed in the temperature range of 300 to 550°C under the quasi-equilibrium growth conditions and low deposition rates of 0.001–0.01 bilayers per minute. The stages of the formation and decay of the nanoclusters as a result of the redistribution of the Ge atoms into two-dimensional pseudomorphic Ge islands before the formation of the continuous wetting layer have been experimentally detected. The positions of the preferable nucleation of three-dimensional Ge islands on the wetting layer formed after the coalescence of the two-dimensional islands have been analyzed. The c2 × 8 → 7 × 7 → c2 × 8 phase transitions due to the lateral growth of the islands and the plastic relaxation of the misfit strains occur on the surface of the three-dimensional Ge islands when their strain state changes. The misfit dislocations gather at the interface and two types of steps lower than one bilayer are formed on the surface of the three-dimensional islands during the relaxation process.  相似文献   

3.
The effect of temperature and Ge coverage on the evolution of self-assembled Ge/Si islands grown by ion beam sputtering deposition is studied. Atomic force microscopy and Raman spectroscopy are used to analyze the island morphology and the intermixing between Si and Ge. The experiments are presented in two aspects. First, when the temperature is increased, intermixing is promoted, resulting in the reappearance of low aspect ratio islands. Second, a different evolution pathway is observed, in which short islands initially don’t grow along the constant ratio of 11:1 (diameter:height) and the islands always grow faster in vertical direction. In summary, the interdiffusion, surface diffusion, and amount of Ge determines the evolution of Ge/Si islands.  相似文献   

4.
We report on the growth and properties of Ge islands grown on (0 0 1) Si substrates with lithographically defined two-dimensionally periodic pits. After thermal desorption and a subsequent Si buffer layer growth these pits have an inverted truncated pyramid shape. We observe that on such prepatterned substrates lens-like Ge-rich islands grow at the pit bottoms with less Ge deposition than necessary for island formation on flat substrates. This is attributed to the aggregation of Ge at the bottom of the pits, due to Ge migration from the pit sidewalls. At the later stages of growth, dome-like islands with dominant {1,1,3} or {15,3,23}, or other high-index facets [i.e. {15,3,20} facets] are formed on the patterned substrates as shown by surface orientation maps using atomic force microscopy. Furthermore, larger coherent islands can be grown on patterned substrates as compared to Ge deposition on flat ones.  相似文献   

5.
Incorporating self-assembled Ge islands on Si surfaces into electronic devices has been suggested as a means of forming small features without fine-scale litho- graphy. For use in electronic devices, the electrical properties of the deposited Ge and their relation to the underlying Si substrate must be known. This report presents the results of a surface photovoltage investigation of the surface energy barrier as increasing amounts of Ge are added to a Si surface by chemical vapor deposition. The results are interpreted in terms of band discontinuities and surface states. The surface barrier increases as a wetting layer is deposited and continues to increase as defect-free islands form. It saturates as the islands grow. As the amount of Ge continues increasing, defects form, and the surface barrier decreases because of the resulting allowed states at the Ge/Si interface. Qualitatively similar behavior is found for Si(001) and Si(111). Covering the Ge with Si reduces the surface-state density and possibly modifies the wetting layer, decreasing the barrier to one more characteristic of Si. Initial hydrogen termination of the surface decreases the active surface-state density. As the H desorbs, the surface barrier increases until it stabilizes as the surface oxidizes. The behavior is briefly correlated with scanning-tunneling spectroscopy data. Received: 13 November 2000 / Accepted: 14 November 2000 / Published online: 23 May 2001  相似文献   

6.
Based on first-principles calculations of surface diffusion barriers, we show that on a compressive Ge(001) surface the diffusivity of Ge is 10(2)-10(3) times higher than that of Si in the temperature range of 300 to 900 K, while on a tensile surface, the two diffusivities are comparable. Consequently, the growth of a compressive SiGe film is rather different from that of a tensile film. The diffusion disparity between Si and Ge is also greatly enhanced on the strained Ge islands compared to that on the Ge wetting layer on Si(001), explaining the experimental observation of Si enrichment in the wetting layer relative to that in the islands.  相似文献   

7.
The two-dimensional (2D) to three-dimensional (3D) morphological transition in strained Ge layers grown on Si(001) is investigated using scanning tunneling microscopy. The initial step takes place via the formation of 2D islands which evolve into small ( approximately 180 A) 3D islands with a height to base diameter ratio of approximately 0.04, much smaller than the 0.1 aspect ratio of 105-faceted pyramids which had previously been assumed to be the initial 3D islands. The "prepyramid" Ge islands have rounded bases with steps oriented along <110> and exist only over a narrow range of Ge coverages, 3.5-3.9 monolayers.  相似文献   

8.
Growth mechanism and morphology of Ge on Pb covered Si(111) surfaces   总被引:1,自引:0,他引:1  
We study the mechanism and surface morphology in epitaxial growth of Ge on Pb covered Si(111) using a scanning tunneling microscope (STM). We find that Ge adatoms have a very large diffusion length at room temperature. The growth is close to perfect layer-by-layer for the first two bilayers. Surface roughness increases gradually with the film thickness, but no 3D islands are found at room temperature. For growth at 200°C, 3D Ge islands appear after completion of the second bilayer. At room temperature, we believe, the Pb layer enhances surface diffusion and the descending-step motion of Ge adatoms, but the ascending-step motion is hindered and thus 3D island growth is suppressed.  相似文献   

9.
The photoluminescence spectra of structures with self-assembled GeSi/Si(001) islands are investigated as functions of the growth temperature. It is shown that the shift of the peak of photoluminescence from islands toward lower energies on decreasing the growth temperature is due to the suppression of Si diffusion into islands and an increase in the fraction of Ge in islands. A photoluminescence signal from the GeSi islands is found in the region of energies down to 0.6 eV, which is considerably smaller than the band-gap width in bulk Ge. The position of the peak of photoluminescence from islands is described well by the model of a real-space indirect optical transition with account of the real composition and elastic strains of the islands. Mono-and multilayer structures are obtained with self-assembled GeSi/Si(001) nanoislands exhibiting a photoluminescence signal in the region 1.3–2 μm at room temperature.  相似文献   

10.
Self-assembled Ge islands were grown on Si(100) substrate by Si2H6-Ge molecular beam epitaxy. After being subjected to chemical etching, it is found that the photoluminescence from the etched Ge islands became more intense and shifted to the higher-energy side compared to that of the as-deposited Ge islands. This behaviour was explained by the effect of chemical etching on the morphology of the Ge islands. Our results demonstrate that chemical etching can be a way to change the luminescence property of the as-deposited islands.  相似文献   

11.
We report the growth of Ge islands on Si (001) substrates with lithographically defined two-dimensionally periodic pits using focused ion-beam patterning and molecular beam epitaxy. The formation of circularly ordered Ge islands has been achieved by means of nonuniform strain field around the periphery of the holes due to ion bombardment. Lateral ordering of the Ge islands have been controlled by both the pit size and pit separation. Preferential growth at the pit sites has also been achieved by using appropriate pattern shape and size.  相似文献   

12.
Jing-Peng Song 《中国物理 B》2022,31(3):37401-037401
Introducing metal thin films on two-dimensional (2D) material may present a system to possess exotic properties due to reduced dimensionality and interfacial effects. We deposit Pb islands on single-crystalline graphene on a Ge(110) substrate and studied the nano- and atomic-scale structures and low-energy electronic excitations with scanning tunneling microscopy/spectroscopy (STM/STS). Robust quantum well states (QWSs) are observed in Pb(111) islands and their oscillation with film thickness reveals the isolation of free electrons in Pb from the graphene substrate. The spectroscopic characteristics of QWSs are consistent with the band structure of a free-standing Pb(111) film. The weak interface coupling is further evidenced by the absence of superconductivity in graphene in close proximity to the superconducting Pb islands. Accordingly, the Pb(111) islands on graphene/Ge(110) are free-standing in nature, showing very weak electronic coupling to the substrate.  相似文献   

13.
Anomalous x-ray scattering is employed for quantitative measurements of the Ge composition profile in islands on Si(001). The anomalous effect in SiGe is enhanced exploiting the dependence of the complex atomic form factors on the momentum transfer. Comparing the intensity ratios for x-ray energies below and close to the K edge of Ge at various Bragg reflections in the grazing incidence diffraction setup, the sensitivity for the Ge profile is considerably enhanced. The method is demonstrated for SiGe dome-shaped islands grown on Si(001). It is found that the composition inside the island changes rather abruptly, whereas the lattice parameter relaxes continuously.  相似文献   

14.
低温下用MBE方法生长了Ge/Si超晶格,X射线反射及横向散射研究表明,Ge亚层上下表面的粗糙度呈反对称,下表面大的粗糙度来源于Ge向Si亚层中扩散形成SiGe混合组分结构,这种组分结构可以用一平均成分的SiGe合金层加以拟合,从而使得各亚层均有一个合理的粗糙度,旋转样品进行的X射线散射研究表明,这种SiGe的混合是各向同性的,这与透射电子显微镜的研究结构相一致.  相似文献   

15.
The interactions of Ge adatoms with a Si(100) surface terminated by an ordered layer of Te have been studied in detail using XPS, SXPS, STM and LEED. It has been demonstrated that the Te layer has a surfactant action on the growth mode of the Ge in that the two dimensional growth regime is extended to at least 200 Å and the Te is seen to segregate to the growing Ge surface. The surface reconstruction of the Ge layer changes from (1 × 1) in the initial stages to (2 × 2) as growth proceeds and the surface population of Te is reduced. SXPS line shape analysis has indicated that the initial stages of Ge incorporation are characterised by the formation of small islands above those surface Si sites not fully coordinated with Te. Continued growth of such islands is, however, restricted due to their high surface free energy with respect to the surrounding Te-terminated areas. Ge atoms therefore site-exchange with Te atoms in bridge sites, thus becoming incorporated onto the Si lattice and displacing the Te to bridge sites on the growing surface. In this manner islanding is prevented and two-dimensional growth continues beyond the critical thickness. No evidence is seen for any significant incorporation of the Te within the growing Ge layer.  相似文献   

16.
At room temperature deposited Ge films (thickness < 3 nm) homogeneously wet CaF2/Si(1 1 1). The films are crystalline but exhibit granular structure. The grain size decreases with increasing film thickness. The quality of the homogeneous films is improved by annealing up to 200 °C. Ge films break up into islands if higher annealing temperatures are used as demonstrated combining spot profile analysis low energy electron diffraction (SPA-LEED) with auger electron spectroscopy (AES). Annealing up to 600 °C reduces the lateral size of the Ge islands while the surface fraction covered by Ge islands is constant. The CaF2 film is decomposed if higher annealing temperatures are used. This effect is probably due to the formation of GeFx complexes which desorb at these temperatures.  相似文献   

17.
Stacks of Ge islands layers, separated by thin Si spacer layers, have been grown on prepatterned Si (0 0 1) substrates. The sample topography, obtained by atomic force microscopy, exhibits a regular two-dimensional island arrangement. The vertical alignment is confirmed in cross-sectional transmission electron microscopy images. X-ray diffraction reciprocal space maps around the (0 0 4) Bragg point reveal exceptional lateral and vertical ordering of the Ge islands. Photoluminescence spectra taken at 5 K show well-separated peaks of the no-phonon and the transverse-optical phonon replica of these ordered islands, which is achieved too, due to the excellent island size uniformity.  相似文献   

18.
The growth of self-assembled Ge(Si) islands on a strained Si1?xGex layer (0% < x < 20%) is studied. The size and the surface density of islands are found to increase with Ge content in the Si1?xGex layer. The increased surface density is related to augmentation of the surface roughness after deposition of the SiGe layer. The enlargement of islands is accounted for by the decrease of the wetting layer in thickness due to the additional elastic energy accumulated in the SiGe layer and to enhanced Si diffusion from the Si1?xGex layer into the islands. The increase in the fraction of the surface occupied by islands leads to a greater order in the island arrangement.  相似文献   

19.
The self-assembly process of Ge islands on patterned Si (0 0 1) substrates is investigated using scanning tunneling microscopy. The substrate patterns consist of one-dimensional stripes with “V”-shaped geometry and sidewalls inclined by an angle of 9° to the (0 0 1) surface. Onto these stripes, Ge is deposited in a step-wise manner at different temperatures from 520 °C to 650 °C. At low temperature, the Ge first grows nearly conformally over the patterned surface but at about 3 monolayers a strong surface roughening due to reconstruction of the surface ridges as well as side wall ripple formation occurs. At 600 °C, a similar roughening takes place, but Ge accumulates within the grooves such that at a critical thickness of 4.5 monolayers, 3D islands are formed at the bottom of the grooves. This accumulation process is enhanced at 650 °C growth, so that the island formation starts about 1 monolayers earlier. At 600 and 650 °C, all islands are all aligned at the bottom of the stripes, whereas at 550 °C Ge island form preferentially on top of ridges. The experimental observations are explained by the strong temperature dependence of Ge diffusion over the patterned surface.  相似文献   

20.
The Si capping of Ge/Si(001) islands was observed by in situ time-resolved transmission electron microscopy. During the initial stages of the Si deposition, islands were observed not only to flatten but also to shrink in volume. This unexpected shrinkage is explained by taking into account the intermixing of the deposited Si with the wetting layer and a consequently induced diffusion of Ge from the islands into the wetting layer. A model of the capping process which takes into account Ge diffusion is presented which is in good agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号