首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of this work was to investigate the apoptosis induction and mitochondria alteration after photodamage exerted by incubation of HeLa cells with Rose Bengal acetate-derivative (RBAc) followed by irradiation for a total dose of 1.6 J/cm2. This treatment was previously demonstrated to reduce cell viability under mild treatment conditions, suggesting the restoration of the photoactive molecule in particularly sensitive cell sites. Indeed, Rose Bengal (RB) is a very efficient photosensitizer, whose photophysical properties are inactivated by addition of the quencher group acetate. The RBAc behaves as a fluorogenic substrate by entering easily the cells where the original, photoactive molecule is restored by specific esterases. Different intracellular sites of photodamage of RB are present. In particular, fluorescence imaging of Rodamine 123 and JC-1 labelled cells showed altered morphology and loss of potential membrane of mitochondria. MTT and NR assays gave indications of alteration of mitochondrial and lysosomal enzyme activities. These damaged sites were likely responsible for triggering apoptosis. Significant amount of apoptotic cell death (about 40%) was induced after light irradiation followed RBAc incubation as revealed by morphological (modification of cell shape and blebs formation), cytochemical (FITC-Annexin-V positive cells) and nuclear fragmentation assays.  相似文献   

2.
Abstract— Intracellular targets for the photosensitizer α-terthienyl (αT) were examined by fluorescence microscopy and microfluorospectrometry using human nonkeratinized buccal cells. Intracellular distribution of αT was observed as fluorescent patches widely dispersed in the cytoplasm. The distribution of the fluorescent patches was compared with that of acid phosphatase activity visualized as an azo dye produced by the fast garnet 2-methyl-4-[(2-methyl-phenyl)azo]benzenediasonium sulfate reaction. Because both the distribution sites coincided, lysosomes were the likely sites of intracellular affinity of αT. However, because acid phosphatase is not a specific lysosomal marker, we tried to detect another lysosomal enzyme, β-galactosidase, to confirm if the fluorescent patches were lysosomes, using fluorescein-di-(β-D-galactopyranoside) (FDG) as a fluorogenic substrate. Without UV-A (320–400 nm) irradiation of the cells after uptake of αT and FDG, no significant fluorescence was observed. In contrast, with prior UV-A irradiation in the presence of αT and FDG, the bright yellow fluorescence of fluorescein, which is the digested product of FDG, was clearly detected in the cells by fluorescence microscopy. This observation implied that inflow of external FDG into the lysosomes is caused by lysosomal membrane damage on αT photosensitization. The present results indicated that lysosomes are the primary photosensitization site of αT.  相似文献   

3.
The photodegradation and photosensitization of several mycosporine-like amino acids (MAAs) were investigated. The photodegradation of the MAA, palythine, was tested with three photosensitizers: riboflavin, rose bengal and natural seawater. For comparison of degradation rates, the riboflavin-mediated photosensitization of six other MAAs was also examined. When riboflavin was used as a photosensitizer in distilled water, MAAs were undetectable after 1.5h. Palythine showed little photodegradation when rose bengal was added as the photosensitizer (k=0.12x10(-3)m(2)kJ(-1)). Palythine dissolved in natural seawater containing high nitrate concentrations also showed slow photodegradation rate constants (k=0.26x10(-3)m(2)kJ(-1)) over a 24-h period of constant irradiation. Similar experiments in deep seawater with porphyra-334 and shinorine resulted in 75% of the initial MAA remaining after 4h of irradiation and rates of 0.018 and 0.026x10(-3) m(2) kJ(-1), respectively. Experiments conducted in deep seawater with riboflavin additions resulted in photodegradation rate constants between 0.77x10(-3) and 1.19x10(-3)m(2)kJ(-1) for shinorine and porphyra-334, respectively. Photoproduct formation appeared to be minimal with the presence of a dehydration product of the cycloheximine ring structure indicated as well as the presence of amino acids. Evidence continues to build for the role of MAAs as potent and stable UV absorbers. This study further highlights the photostability of several MAAs in both distilled and seawater in the presence of photosensitizers.  相似文献   

4.
Electrophysiological responses of rat myocardial cells to exogenous photosensitization reactions for a short period of incubation with two photosensitizers, talaporfin sodium or porfimer sodium, were measured in a subsecond time scale. The loading period of the photosensitizer when the photosensitizer might not be taken up by the cells was selected as 15min, which was determined by the fluorescence microscopic observation. We measured the intracellular Ca(2+) concentration ([Ca(2+) ](in) ) by using a fluorescent Ca(2+) indicator, Fluo-4 AM, under a high-speed confocal laser microscope to evaluate the acute electrophysiological cell response to the photosensitization reaction. The measured temporal change in Fluo-4 fluorescence intensity indicated that the response to the photosensitization reaction might be divided into two phases in both photosensitizers. The first phase is acute response: disappearance of Ca(2+) oscillation when irradiation starts, which might be caused by ion channel dysfunction. The second phase is slow response: [Ca(2+) ](in) elevation indicating influx of Ca(2+) due to the concentration gradient. The continuous Ca(2+) influx followed by changes in cell morphology suggested micropore formation on the surface of the cell membrane, resulting in necrotic cell death.  相似文献   

5.
Small molecule labeling techniques for cellular proteins under physiological conditions are very promising for revealing new biological functions. We developed a no-wash fluorogenic labeling system by exploiting fluorescence resonance energy transfer (FRET)-based fluorescein-cephalosporin-azopyridinium probes and a mutant β-lactamase tag. Fast quencher elimination, hydrophilicity, and high resistance against autodegradation were achieved by rational refinement of the structure. By applying the probe to real-time pulse-chase analysis, the trafficking of epidermal growth factor receptors between cell surface and intracellular region was imaged. In addition, membrane-permeable derivatization of the probe enabled no-wash fluorogenic labeling of intracellular proteins.  相似文献   

6.
The purpose of the present study was to gain new insight regarding the role membrane permeabilization plays in the photosensitization-induced increase in intracellular calcium concentration. During continuous rose bengal photosensitization we monitored the contractile state (relaxed or hypercontracted) of isolated frog cardiac cells and assessed the photosensitization-induced membrane-leak conductance. We investigated the effects of irradiance, extracellular calcium concentration, intracellular chelation of calcium and substitution of tetraethylammonium (TEA) for extracellular sodium. We found that with 2 and 5 mM extracellular calcium cell hypercontracture occurred when leak conductance reached values on the order of 6-7 nS, independent of the illumination duration required to reach this conductance. With 0.5 mM calcium hypercontracture occurred when leak conductance reached values on the order of 11 nS. Chelation of intracellular calcium delayed the onset of cell hypercontracture and increased by two- to three-fold the leak conductance at the initiation of cell hypercontracture. Substitution of TEA for extracellular sodium did not affect the time to contracture onset but reduced leak conductance at contracture onset nearly three-fold. We discuss how our results support the conclusion that photosensitization induces an increase in intracellular calcium concentration via calcium influx through the transmembrane-permeability pathway opened by the photosensitization process.  相似文献   

7.
The complex nature of bacterial cell membrane and structure of biofilm has challenged the efficacy of antimicrobial photodynamic therapy. This study was aimed to synthesize a polycationic chitosan-conjugated rose bengal (CSRB) photosensitizer and test its antibiofilm efficacy on Enterococcus faecalis (gram positive) and Pseudomonas aeruginosa (gram negative) using photodynamic therapy. During experiments, CSRB was tested along with an anionic photosensitizer rose bengal (RB) and a cationic photosensitizer methylene blue (MB) for uptake and killing efficacy on 7-day-old E. faecalis and P. aeruginosa biofilms. Microbiological culture based analysis was used to analyze the cell viability, while laser scanning confocal microscopy (LSCM) was used to examine the structure of biofilm. The synthesized CSRB showed absorbance spectrum similar to the RB. The concentration of CSRB uptaken by both the bacterial biofilms was significantly higher than that of RB and MB (P < 0.05). Photoactivation resulted in significantly higher elimination of both bacterial biofilms sensitized with CSRB than RB and MB. The structure of biofilm under LSCM was found to be disrupted following CSRB treatment. The present study highlighted the importance of inherent cell membrane permeabilizing effect of chitosan and increased cell/biofilm uptake of conjugated photosensitizer to produce significant antibiofilm efficacy during photodynamic therapy.  相似文献   

8.
We report energy-transferring organically modified silica nanoparticles for two-photon photodynamic therapy. These nanoparticles co-encapsulate two-photon fluorescent dye nanoaggregates as an energy up-converting donor and a photosensitizing PDT drug as an acceptor. They combine two features: (i) aggregation-enhanced two-photon absorption and emission properties of a novel two-photon dye and (ii) nanoscopic fluorescence resonance energy transfer between this nanoaggregate and a photosensitizer, 2-devinyl-2-(1-hexyloxyethyl)pyropheophorbide. Stable aqueous dispersions of the co-encapsulating nanoparticles (diameter < or = 30 nm) have been prepared in the nonpolar interior of micelles by coprecipitating an organically modified silica sol with the photosensitizer and an excess amount of the two-photon dye which forms fluorescent aggregates by phase separation from the particle matrix. Using a multidisciplinary nanophotonic approach, we show: (i) indirect excitation of the photosensitizer through efficient two-photon excited intraparticle energy transfer from the dye aggregates in the intracellular environment of tumor cells and (ii) generation of singlet oxygen and in vitro cytotoxic effect in tumor cells by photosensitization under two-photon irradiation.  相似文献   

9.
The photosensitization mechanism for cationic polymerizations initiated by diaryliodonium salts photosensitized by anthracene was investigated using fluorescence and phosphorescence spectroscopy. In situ photosensitizer fluorescence measurements confirmed that the photosensitization reaction proceeds by an electron transfer process. Transient phosphorescence studies demonstrated that electron transfer occurred from the triplet excited state of anthracene to the initiator, with an intrinsic kinetic rate constant of 2 × 108 L/mol s. Further evidence for the role of the triplet state was provided by an observed seven-fold decrease in the polymerization rate upon addition of a triplet state quencher. Finally, numerical solution of the photophysical kinetic equations indicated that the triplet state concentration was approximately three orders of magnitude higher than that of the singlet state, and that 94-96% of the active cationic centers are produced by reaction of the initiator with the triplet state. These results indicate that the electron transfer occurs primarily from the triplet state of anthracene, with the singlet state providing only a minor contribution to the photosensitization reaction. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
Melanin, a major pigment found in retinal pigment epithelium (RPE) cells, is considered to function in dual roles, one protective and one destructive. By quenching free radical species and reactive oxygen species (ROS) melanin counteracts harmful redox stress. However, melanin is also thought to be capable of creating ROS. In this destructive role, melanin increases redox strain in the cell. This study uses readily available eumelanin extracted from porcine RPE cells as a more authentic model than synthetic melanin to determine specific mechanisms of melanin activity with regard to singlet oxygen in the presence and absence of rose bengal, a singlet-oxygen photosensitizer. Optical detection of singlet-oxygen was determined by monitoring the bleaching of p-nitrosodimethylaniline in the presence of histidine. Production of singlet oxygen in aqueous oxygen-saturated solutions of rose bengal without eumelanin was readily accomplished. In contrast, detection of singlet oxygen in oxygen-saturated solutions of eumelanin without rose bengal failed, consistent with results of others. However, a significant decrease in singlet oxygen production by rose bengal was observed in the presence of eumelanin. After correction for light absorption and chemical bleaching of eumelanin, the results show that eumelanin also provides a photoprotective mode arising from chemistry, that is, not just the physical process of light absorption followed by energy dissipation as heat.  相似文献   

11.
We describe the first examples of fluorogenic aldehydes useful for monitoring many types of reactions including aldol reactions, allylations, and reductions. The fluorogenic aldehydes were constructed by covalent combination of a fluorophore and an aldehyde moiety via a linker. In the resulting single molecule, the aldehyde functioned as a quencher of the fluorophore's fluorescence. The reaction product, modified at the aldehyde functionality, no longer served as an effective quencher. The reaction products showed up to approximately 80-fold higher fluorescence than the aldehyde reactants.  相似文献   

12.
This study evaluated the rose bengal‐ and erythrosine‐mediated photoinactivation against Salmonella Typhimurium and Staphylococcus aureus planktonic and sessile cells using green LED as a light source. The free‐living or 2‐day‐old biofilm cells were treated with different concentrations of the photosensitizing agents and subjected to irradiation. Only 5 min photosensitization with rose bengal at 25 nmol L?1 and 75 μmol L?1 completely eliminated S. aureus and S. Typhimurium planktonic cells, respectively. Erythrosine at 500 nmol L?1 and 5 min of light exposure also reduced S. aureus planktonic cells to undetectable levels. Eradication of S. aureus biofilms was achieved when 500 μmol L?1 of erythrosine or 250 μmol L?1 of rose bengal was combined with 30 min of irradiation. Scanning electron microscopy allowed the observation of morphological changes in planktonic cells and disruption of the biofilm architecture after photodynamic treatment. The overall data demonstrate that rose bengal and erythrosine activated by green LED may be a targeted strategy for controlling foodborne pathogens in both planktonic and sessile states.  相似文献   

13.
Fungi in the genus Cercospora produce cercosporin, a potent singlet oxygen (1O2)-generating photosensitizer that plays a critical role in the ability of these fungi to parasitize plants. Although plants, mice, bacteria and many fungi are sensitive to cercosporin, Cercospora species are resistant to its toxicity. The cellular resistance of these fungi to cercosporin has been correlated with fungal cell surface reducing ability and the ability to maintain cercosporin in a chemically reduced state. As a model for reduced cercosporin we employed a reduced, acetylated derivative (hexaacetyl-dihydrocercosporin, HAC) that we tested for 1O2 production in a range of solvents. We found that as a 1O2 photosensitizer, HAC was only moderately effective in organic solvents (phi SO = 0.14-0.18) and very poor in water (phi SO = 0.02-0.04). By contrast, the 1O2 quantum yield of cercosporin itself was unaffected by solvent (phi SO = 0.84-0.97). To investigate the localization of reduced cercosporin in fungal cells, we developed a fluorescence assay using laser scanning confocal microscopy. This assay showed a uniform green fluorescence, indicative of reduced cercosporin, in the cytoplasm of hyphal cells treated with cercosporin. We hypothesize that the main protection mechanism against cercosporin phototoxicity in the fungus consists of transformation of cercosporin to a reduced state and localization of this reduced form in the aqueous compartment of the cell, thus decreasing intracellular 1O2 production to levels that can be tolerated by the fungus. In addition, we have, for the first time, directly detected 1O2 phosphorescence from fungal culture, either stained with the photosensitizer rose bengal or actively synthesizing cercosporin, demonstrating 1O2 production in vivo and from cercosporin in culture.  相似文献   

14.
Photodynamic therapy employs photosensitizers for the selective destruction of tumor tissue while sparing the surrounding healthy tissue. Photosensitization may also be applied to the selective eradication of microorganisms. Photosensitized inactivation requires that the sensitizer bind to the target and therefore the factors that determine photosensitizer binding are critical to photosensitization selectivity. This paper reports the determination of some features of the binding site of the potent photosensitizer, Rose Bengal, in Salmonella bacteria and describes some of the factors that affect this binding. The shift in the wavelength of maximum fluorescence and experiments with the fluorescence quencher TNBS indicate that Rose Bengal is located in a non-aqueous compartment such as the outer membrane. The dye does not seem to significantly accumulate inside the cell, but rather to accumulate in the outer membrane. Time-dependent changes in sensitizer localization in two strains of Salmonella typhimurium that differ in cell wall formation, LT-2 and TA1975, correspond to their differences in susceptibility to photosensitized killing. Therefore these results provide clues to the factors that determine photosensitization selectivity. Understanding this phenomenon is essential for the efficient design of selective photosensitizers and for optimizing antitumor and antiviral photodynamic therapy.  相似文献   

15.
16.
A polymeric photosensitizer, poly(NIPAM-co-RB), consisting of N-isopropylacrylamide and rose bengal units, demonstrates a temperature-controlled changeable oxygenation selectivity by singlet oxygen in water.  相似文献   

17.
AN EFFICIENT OXYGEN INDEPENDENT TWO-PHOTON PHOTOSENSITIZATION MECHANISM   总被引:1,自引:0,他引:1  
A novel oxygen-independent photosensitization mechanism from the upper triplet state (Tn) of rose bengal has been demonstrated by selectively populating Tn by sequential two-color laser excitation. Products formed from Tn inhibit red blood cell acetylcholinesterase and decrease viability of P388D1 mouse macrophage monocyte cells as measured by trypan blue exclusion assay. Laser flash photolysis studies indicate that Tn reacts efficiently, as evidenced by permanent photobleaching of T1 absorption, with chemical yields approaching unit efficiency. This mechanism may have application for oxygen deficient photosensitization under high intensity, pulsed laser irradiation.  相似文献   

18.
The interactions between riboflavin (RF) and human and bovine serum albumin (HSA and BSA) were studied by using absorption and fluorescence spectroscopic methods. Intrinsic fluorescence emission spectra of serum albumin in the presence of RF show that the endogenous photosensitizer acts as a quencher. The decrease of fluorescence intensity at about 350 nm is attributed to changes in the environment of the protein fluorophores caused by the ligand. The quenching mechanisms of albumins by RF were discussed. The binding constants and binding site number were obtained at various temperatures. The distance between albumins and RF in the complexes suggests that the primary binding site for RF is close to tryptophan residue (Trp214) of HSA and Trp212 of BSA. The hydration process of albumins has also been discussed.  相似文献   

19.
The specific light-induced, non-enzymatic photolysis of mOGG1 by porphyrin-conjugated or rose bengal-conjugated streptavidin and porphyrin-conjugated or rose bengal-conjugated first specific or secondary anti-IgG antibodies is reported. The porphyrin chlorin e6 and rose bengal were conjugated to either streptavidin, rabbit anti-mOGG1 primary specific antibody fractions or goat anti-rabbit IgG secondary antibody fractions. Under our experimental conditions, visible light of wavelengths greater than 600 nm induced the non-enzymatic degradation of mOGG1 when this DNA repair enzyme either directly formed a complex with chlorin e6-conjugated anti-mOGG1 primary specific antibodies or indirectly formed complexes with either streptavidin-chlorin e6 conjugates and biotinylated first specific anti-mOGG1 antibodies or first specific anti-mOGG1 antibodies and chlorin e6-conjugated anti-rabbit IgG secondary antibodies. Similar results were obtained when rose bengal was used as photosensitizer instead of chlorin e6. The rate of the photochemical reaction of mOGG1 site-directed by all three chlorin e6 antibody complexes was not affected by the presence of the singlet oxygen scavenger sodium azide. Site-directed photoactivatable probes having the capacity to generate reactive oxygen species (ROS) while destroying the DNA repair system in malignant cells and tumors may represent a powerful strategy to boost selectivity, penetration and efficacy of current photodynamic (PDT) therapy methodologies.  相似文献   

20.
Sensitized-photocatalytic decomposition of 2,4-dichlorophenol (2,4-DCP) using xan-thene dyes as photosensitizer on TiO2 particles under visible light irradiation was studied. 2,4-DCP can be decomposed efficiently by this method and the decomposition efficiency of 2,4-DCP decreases in the following order: eosin Y ≈ rose bengal > erythrosine B > rhodamine B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号