首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the presence of benzene, toluene, m-xylene, mesitylene and durene, the pyrrolic NH stretching band of betacarboline, 9H-pyrido[3,4-b]indole, and its 1-methyl derivative, harmane, in tetrachloroethane diminishes in intensity while a new red-shifted band grows up. The shifts of the associated bands increase linearly with the pi-electron density of the substrates. These spectral changes are attributed to the formation of 1:1 molecular association complexes between the betacarbolines and the benzenoid substrates. The complexes are stabilized by the hydrogen-bonding interaction between the pyrrolic NH group of betacarboline and the pi-delocalized electrons of the benzene derivatives. The influence of these NH/pi hydrogen-bonding interactions in the fluorescence spectra of betacarboline is discussed.  相似文献   

2.
The NH-pi interaction has been detected in the crystal structures of Co(III) ternary complexes with N,N-bis(carboxymethyl)-(S)-phenylalanine (BCMPA) and aromatic amino acids including (S)-phenylalanine ((S)-Phe), (R)-phenylalanine ((R)-Phe), and (S)-tryptophan ((S)-Trp)). Additionally, this interaction has been studied in solution for Co(III) ternary complexes with BCMPA or NTA (NTA = nitrilotriacetic acid) and several amino acids (AA) by means of electronic absorption, circular dichroism (CD), and (1)H NMR spectroscopies. The CD intensities of the Co(III) complexes with aromatic amino acids measured in the d-d region ( approximately 20.5 x 10(3) cm(-)(1)) are significantly decreased in ethanol solutions relative to water. Analogous complexes with aliphatic amino acids do not exhibit this solvent effect. The (1)H NMR spectra of the Co(III) complexes with aromatic amino acids measured in DMSO-d(6) exhibit upfield shifts of the NH peaks compared with those with aliphatic amino acids, which suggest a shielding effect due to the aromaticity. The upshift values coincide with those experimentally evaluated from the crystal structures. The magnitude of the upfield shifts agrees well with Hammett's rule, indicating that the increase of pi-electron densities on the aromatic rings leads attractive NH-pi interaction that exerts a larger shielding effect for the NH protons. In ligand-substitution reactions of the carbonatocobalt(III) complexes with amino acids, the yields of those with aromatic amino acids are higher than the yields obtained for complexes with aliphatic amino acids. This observation is discussed in connection with the important contribution of the NH-pi interaction as one of the promotion factors in the reaction.  相似文献   

3.
Among the several weak intermolecular interactions pervading chemistry and biology, the NH-pi interaction is one of the most widely known. Nevertheless its weak nature makes it one of the most poorly understood and characterized interactions. The present study details the results obtained on gas-phase complexes of ammonia with various substituted pi systems using both laser vibrational spectroscopy and ab initio calculations. The spectroscopic measurements carried out by applying one-color resonant two-photon ionization (R2PI) and IR-vibrational predissociation spectroscopy in the region of the NH stretches yield the first experimental NH stretching shifts of ammonia upon its interaction with various kinds of pi-systems. The experiments were complemented by ab initio calculations and energy decompositions, carried out at the second-order M?ller-Plesset (MP2) level of theory. The observed complexes show characteristic vibrational spectra which are very similar to the calculated ones, thereby allowing an in-depth analysis of the interaction forces and energies. The interaction energy of the conformers responsible for the observed vibrational spectra has the maximum contribution from dispersion energies. This implies that polarizabilities of the pi-electron systems play a very important role in governing the nature and geometry of the NH-pi interaction. The larger polarizability of ammonia as compared to water and the tendency to maximize the dispersion energy implies that the characteristics of the NH-pi interactions are markedly different from that of the corresponding OH-pi interactions.  相似文献   

4.
As a new type of foldamers, oligoindoles containing 4, 6, and 8 indole rings were synthesized, and their folding properties were characterized by a combination of 1H NMR techniques and UV/visible titration experiments. When chloride was added, the NH signals of the oligoindoles were downfield shifted as a result of hydrogen-bond formation, and the aromatic signals were upfield shifted by stacking between two indoles. Moreover, the ROESY experiment provided definitive NOE evidence for the helical stacking in the presence of chloride. Finally, the UV/visible titration experiments demonstrated that the oligoindoles formed 1:1 complexes with chloride, and the association constants greatly increased with increasing the number of the indole NHs. These observations are all consistent with the fact that oligoindoles adopt a helical conformation when complexed with chloride by hydrogen-bonding interactions.  相似文献   

5.
Hydrogen-bonded complexes of pentachlorocyclopropane with the bases acetonitrile, ammonia, monomethylamine, and dimethylamine have been isolated and characterized for the first time in argon matrices at 16 K. Coordination of the proton of pentachlorocyclopropane (Pccp) to the electron donor (N) of the base was evidenced by red shifts of the CH stretching mode. These shifts, which range from 22 to 170 cm(-1), increase in the order CH3CN, NH3, (CH3)NH2, and (CH3)2NH. Density functional theory (DFT) calculations at the B3LYP level agree well with experiment and support the formation of 1:1 complexes of Pccp/base. Distinct changes were observed in ring modes as well as CCl and CCl2 modes. The hydrogen bond energy of the complexes varies from 2.95 to 4.22 kcal/mol and is stronger than our previously studied bromocyclopropane-ammonia complex (2.35 kcal/mol, MP2).  相似文献   

6.
Dithia[3.3](4,9)benzenopyrenophanes carrying various functional groups at the inner position or the outer position of the benzene ring have been prepared. The pyrenophanes with the substituent at the inner position of the opposite benzene ring exhibit the conformation in which the pyrene and the benzene components exist in the parallel manner (parallel conformation). On the contrary the conformation characterized by the perpendicular orientation of the pyrene and the benzene components has been confirmed for the pyrenophanes having the substituent at the outer position of the opposite benzene ring (perpendicular conformation). The NH-pi interaction between the inner amino group on the opposite benzene ring and the pyrene ring was observed. Formation of charge-transfer complexes of the pyrenophanes and tetracyanoethylene (TCNE) was performed. It has been found out that the orientation of two aromatic components and the NH-pi interaction as well as the electronic nature of the substituent on the opposite benzene ring significantly affect characteristics of the charge-transfer complexes in this pyrenophane system.  相似文献   

7.
Electronic structure calculations (DFT) suggest that ligand-stabilized three-membered gold(I) rings constituting the core structure in a series of cyclo-Au3L(n)H(3-n) (L = CH3, NH2, OH and Cl; n = 1, 2, 3) molecules exhibit aromaticity, which is primarily due to 6s and 5d cyclic electron delocalization over the triangular Au3 framework (s- and d-orbital aromaticity). The aromaticity of the novel triangular gold(I) isocycles was verified by a number of established criteria of aromaticity. In particular, the nucleus-independent chemical shift, NICS(0), the upfield changes in the chemical shifts for Li+, Ag+, and Tl+ cations over the Au3 ring plane, and their interaction with electrophiles (e.g., H+, Li+, Ag+, and Tl+) are indicative for the aromaticity of the three-membered gold(I) rings. Interestingly, unlike the respective substituted derivatives of cyclopropenium cation and the bora-cyclopropene carbacyclic analogues, the aromatic Au3 rings, although exhibit comparable diatropicity, react with electrophiles in a different way affording 1:1 and 2:1 sandwichlike complexes. The bonding in the three-membered gold(I) rings is characterized by a common ring-shaped electron density, more commonly seen in aromatic organic molecules and in "all-metal" aromatics, such as the cyclo-[Hg3]4- tetraanion. Moreover, the cation-pi interactions in the 1:1 and 1:2 sandwichlike complexes formed upon reacting the Au3 rings with electrophiles, depending on the nature of the cation, are predicted to be predominantly electrostatic (Li+, Tl+) or covalent (H+, Ag+). The 1:2 complexes constitute a new class of sandwichlike complexes, which are expected to have novel properties and applications.  相似文献   

8.
Abstract— A spectroscopic (UV-visible, Fourier transform IR, steady-state and time-resolved fluorescence) study of hydrogen-bonding interactions between harmane (1-meth-yl-9H-pyrido/3,4- b /indole) and pyridine in the ground and lowest excited singlet state is reported. In low polar and weakly or nonhydrogen-bonding solvents, such as cy-clohexane, chloroform, carbon tetrachloride, toluene and benzene, the analysis of the spectroscopic data indicates that harmane and pyridine form 1:1 stoichiometric hydrogen-bonded complexes in both the ground and singlet excited states. The formation constants of the complexes are greater in the excited than in the ground state. Hydrogen-bonding interaction in the excited state is essential for the quenching of the fluorescence of harmane by pyridine. The stabilities of the hydrogen-bonded complexes between harmane and pyridine diminish as the polarity and hydrogen-bonding ability of the solvent increase.  相似文献   

9.
Efficient dual stereocontrol can be achieved by using axially chiral cyclometalated bidentate N-heterocyclic carbene palladium(II) complexes for the addition of indole to N-tosylarylimines simply by the adjustment of the R group on the benzene rings of the NHC–Pd(II) complexes.  相似文献   

10.
Abstract— The 1-butanol concentration dependence of fluorescence emission intensities and spectra from 3-methylindole/1-butanol exciplexes in 1-heptane reveals a 1:1 stoichimetry near the isoemissive point increasing to 1:2 at higher concentrations. The large increase in stability of the 1:1 complex relative to indole itself is attributed to its relatively low dissociation rate with an activation energy of 36.8 kJ/mol. Each step of exciplex formation shifts the emission maximum about 15 nm to the red. The stronger combining site is the negative C-3. The weaker site is the positive N-1. Stabilization due to charge transfer between excited indole and electrophilic or nucleophilic partners is small relative to dipole-dipole interactions. There is no indication of significant orbital-overlap. The detection of both positive and negative centers for exciplex formation on indole, 1-methyl indole and electronically similar derivatives resolves some long-standing problems and extends the basis of knowledge necessary to use tryptophanyl-residue fluorescence as a quantitative probe for protein conformational character and its changes.  相似文献   

11.
Kinetics of formation of acid–base tetrachloro- and tetrabromotetraazaporphyrin complexes with tert-butylamine and tributylamine in benzene was studied. The rate and activation parameters of the process were shown to depend on the nature of protolytes. The mechanism of intermolecular proton transfer from NH groups of tetrahalogentetraazaporphyrins to the nitrogen-containing base is proposed. The structures of acid–base complexes are considered and their kinetic stability is studied.  相似文献   

12.
Structural and thermodynamic data are presented on the binding properties of anion receptors containing two covalently linked cyclopeptide subunits that bind sulfate and iodide anions with micromolar affinity in aqueous solution. A synchrotron X-ray crystal structure of the sulfate complex of one receptor revealed that the anion is bound between the peptide rings of the biscyclopeptide. Intimate intramolecular contacts between the nonpolar surfaces of the proline rings of the individual receptor moieties in the complex suggest that hydrophobic interactions within the receptor that do not directly involve the guest contribute to complex stability. This finding is supported by a microcalorimetric analysis of the solvent dependence of complex stability, which showed that increasing the water content of the solvent has only a weak influence on the Gibbs energy of binding. Hence, the increasing amount of energy required for desolvating the binding partners in solutions containing more water is almost compensated by the increasingly favorable hydrophobic interactions. Further observations that suggest that guest-induced intra-receptor interactions contribute to guest binding are (i) anion binding of a monomeric cyclopeptide lacking the covalent linkage between the two rings leads to the formation of 2:1 complexes; (ii) in the crystal structure of the 2:1 iodide complex of this monotopic receptor, a similar arrangement of the two cyclopeptide rings has been found as in the sulfate complex of the biscyclopeptide; (iii) complex formation of the monomeric cyclopeptide in aqueous solution is highly cooperative with a large stability constant corresponding to the formation of the 2:1 complexes from relatively instable 1:1 complexes; (iv) the monomeric cyclopeptide forms only 1:1 anion complexes in DMSO where hydrophobic interactions do not take place; and (v) introducing polar hydroxy groups on the proline rings of the monomeric cyclopeptide disrupts cooperativity causing the formation of only 1:1 complexes even in aqueous solution. Taken together these observations demonstrate that, in addition to direct receptor-substrate interactions, noncovalent interactions between the two subunits of such biscyclopeptides contribute significantly to anion complex stability. Reinforcement of molecular recognition through intra-receptor interactions should be an attractive new strategy to boost host-guest affinities.  相似文献   

13.
《Tetrahedron letters》1986,27(8):925-928
X-Ray crystal studies of the titled molecular complexes have revealed the arrangement of parallel overlap between one of the benzene rings of the heavily deformed TCNAQ moiety and donor benzene and pyrene molecules, presumably attributable to the complex formation with weak charge transfer interactions.  相似文献   

14.
The vibrational characteristics (vibrational frequencies and infrared intensities) for the hydrogen-bonded systems of nicotinamide (NA(Z) and NA(E)) with dimethyl sulfoxide (DMSO) have been predicted using ab initio SCF/6-31G(d,p) and DFT (BLYP/6-311++G(d,p)) calculations. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and BLYP calculations show that the complexation between nicotinamide (NA(Z) and NA(E)) and DMSO leads to large red shifts of the stretching vibrations for the hydrogen-bonded N-H bonds of nicotinamide and very strong increase in their IR intensity. The results from the BLYP/6-311++G(d,p) calculations show that the predicted red shifts of the nu(s)(NH) and nu(as)(NH) vibrations for the complex NA(E)-DMSO (1:2) (Deltanu(as)(NH)=-186 cm(-1) and Deltanu(s)(NH)=-198 cm(-1)) are in better agreement with the experimentally measured. The magnitudes of the wavenumber shifts are indicative of strong NH...O hydrogen-bonded interactions in both complexes. The calculations predict an increase of the IR intensity of nu(s)(NH) and nu(as)(NH) vibrations in the complexes up to 14 times. Having in mind that in more cases the predicted changes in the vibrational characteristics for the complexes studied are very near, it could be concluded that both conformers of nicotinamide, Z-conformer and E-conformer, are present in the solution forming the hydrogen-bonded complexes with DMSO.  相似文献   

15.
A series of ab initio calculations are used to determine the C? H???π and π???π‐stacking interactions of aromatic rings coordinated to transition‐metal centres. Two model complexes have been employed, namely, ferrocene and chromium benzene tricarbonyl. Benchmark data obtained from extrapolation of MP2 energies to the basis set limit, coupled with CCSD(T) correction, indicate that coordinated aromatic rings are slightly weaker hydrogen‐bond acceptors but are significantly stronger hydrogen‐bond donors than uncomplexed rings. It is found that π???π stacking to a second benzene is stronger than in the free benzene dimer, especially in the chromium case. This is assigned, by use of energy partitioning in the local correlation method, to dispersion interactions between metal d and benzene π orbitals. The benchmark data is also used to test the performance of more efficient theoretical methods, indicating that spin‐component scaling of MP2 energies performs well in all cases, whereas various density functionals describe some complexes well, but others with errors of more than 1 kcal mol?1.  相似文献   

16.
A tetra L-prolinylmethyl derivative of a tetra-sulfonated calix[4]resorcarene (1) is an effective chiral NMR solvating agent for water-soluble compounds with phenyl, pyridyl, bicyclic aromatic, or indole rings. These aromatic compounds form host-guest complexes with the calix[4]resorcarene in water. Complexation of substrates with the calix[4]resorcarene is likely promoted by hydrophobic effects, and bicyclic substrates have association constants with the calix[4]resorcarene larger than those of similar phenyl-containing compounds. Aromatic resonances of the substrates show substantial upfield shifts because of shielding from the aromatic rings of the calix[4]resorcarene, and several resonances in the 1H NMR spectra typically exhibit enantiomeric discrimination. The extent of enantiomeric discrimination depends in part on interactions of the substituent groups of the substrates with the prolinylmethyl groups of the calix[4]resorcarene. The effectiveness of a calix[4]resorcarene prepared from N-methyl-L-alanine (2) as a chiral NMR discriminating agent is compared to the L-prolinylmethyl derivative.  相似文献   

17.
X-Ray crystal structures of four different fluorine-substituted phenylalanines (two mono- and two tri-substitutions) were analyzed to investigate the effect of fluorine atom on the association pattern of benzene rings. Although respective structures showed similar molecular packing in such a way that the layers of hydrophobic benzene rings and hydrophilic amino/carboxyl groups were alternately running along a crystallographic axis, the association patterns of benzene rings were different depending on the substitution position and number of fluorine atoms. The general features could be that the partially displaced face-to-face interactions are increased with increase in the number of fluorine atoms, whereas the edge-to-face interactions are decreased. The C-H bond next to a fluorine-substituted carbon atom could serve as a donor of an intermolecular C-H.F hydrogen bond.  相似文献   

18.
Using density functional theory within the generalized gradient approximation, we have theoretically studied the formation of neutral metal-aromatic complexes R1-M and R1-M-R2, where M is either neutral lithium, calcium, or gallium and R1 or R2 is benzene or borazine. We first find that calcium atom is an effective mediator for cooperative formation of a sandwich complex with borazine, while others are not. When benzene and borazine are mixed in the presence of calcium, a 1:2:1 mixture of benzene-calcium-benzene, borazine-calcium-benzene, and borazine-calcium-borazine is expected. An "A"-shaped structure is predicted for homo- and heterocomplexes of borazine with partial B-B and B-C bonds, while two rings are planar in the case of homocomplexes of benzene. Our analysis of the electron density distributions in HOMO-1 to LUMO in terms of orbital symmetry in conjunction with analysis of l,m-projected electronic local density of states shows that this correlates with the charge transfer and the interaction of pi states of the rings mediated by empty d-states of Ca, which is ultimately related to the polarity of the B-N bond. We find that there is a large accumulation of electron density on particular atoms upon complex formation, predicting characteristic behavior in electron-transfer reaction and nucleophilic reaction different from those for pure benzene or borazine molecule. The hetero-sandwich complex is of particular interest due to its asymmetrical distribution of excess electrons.  相似文献   

19.
Complexes formed by guanidinium cation and a pair of aromatic molecules among benzene, phenol, or indole have been computationally studied to determine the characteristics of the cation···π interaction in ternary systems modeling amino acid side chains. Guanidinium coordinates to the aromatic units preferentially in the following order: indole, phenol, and benzene. Complexes containing two different aromatic units show an intermediate behavior between that observed for complexes with only one kind of aromatic unit. Most stable structures correspond to doubly‐T shaped arrangements with the two aromatic units coordinating guanidinium by its NH2 groups. Other structures with only one aromatic unit coordinated to guanidinium, such as T‐shaped or parallel‐stacked ones, are less favorable but still showing significant stabilization. In indole and phenol complexes, the formation of hydrogen bonds between the aromatic molecules introduces extra stabilization in T‐shaped structures. Three body effects are small and repulsive in doubly T‐shaped minima. Only when hydrogen bonds involving the aromatic molecules are formed in T‐shaped structures a cooperative effect can be observed. In most complexes the interaction is controlled by electrostatics, with induction and dispersion also contributing significantly depending on the nature and orientation of the aromatic species forming the complex. Although the stability in these systems is mainly controlled by the intensity of the interaction between guanidinium and the aromatic molecules coordinated to it, interactions between aromatic molecules can modulate the characteristics of the complex, especially when hydrogen bonds are formed. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
By mixing cisplatin (cis-diamminedichloroplatinum(II)) with purine base the following ions have been obtained under electrospray ionization conditions: [A+Pt(NH3)2 Cl]+, [A+PtNH3Cl]+, [G+Pt(NH3)2 Cl]+ and [G+PtNH3)Cl]+. Their collision-induced dissociation led to the loss of NH3 and HCl and formation of the protonated base. The last process is strongly favoured for adenine over guanine. It confirms that, analogously as for DNA, formation of the guanine-cisplatin complex is favoured over that of the adenine complex and, as a consequence, it suggests that the mass spectrometric study of nucleic base complexes with platinum may provide some information on the interactions of DNA with other platinum drugs. The loss of NH3 accompanied by that of CO from the guanine ring has experimentally confirmed the presence of a strong hydrogen bond between the NH3 molecule and the O=C6 moiety of guanine found by theoretical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号