首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the exceptionally high energy density of lithium metal anodes, the practical application of lithium‐metal batteries (LMBs) is still impeded by the instability of the interphase between the lithium metal and the electrolyte. To formulate a functional electrolyte system that can stabilize the lithium‐metal anode, the solvation behavior of the solvent molecules must be understood because the electrochemical properties of a solvent can be heavily influenced by its solvation status. We unambiguously demonstrated the solvation rule for the solid‐electrolyte interphase (SEI) enabler in an electrolyte system. In this study, fluoroethylene carbonate was used as the SEI enabler due to its ability to form a robust SEI on the lithium metal surface, allowing relatively stable LMB cycling. The results revealed that the solvation number of fluoroethylene carbonate must be ≥1 to ensure the formation of a stable SEI in which the sacrificial reduction of the SEI enabler subsequently leads to the stable cycling of LMBs.  相似文献   

2.
锂镍钴复合氧化物锂离子电池正极材料的研究   总被引:7,自引:1,他引:6  
韩景立  刘庆国 《电化学》2000,6(4):469-472
本文报道了以碱式碳酸镍、碱式碳酸钴和碳酸锂为原料 ,柠檬酸为络合剂的新溶胶凝胶法制备复合锂镍钴氧化物锂离子电池正极材料 .氧气流中制备的LiNi0 .8Co0 .2 O2 具有高的循环容量 (~ 190mAhg 1)  相似文献   

3.
Despite the exceptionally high energy density of lithium metal anodes, the practical application of lithium-metal batteries (LMBs) is still impeded by the instability of the interphase between the lithium metal and the electrolyte. To formulate a functional electrolyte system that can stabilize the lithium-metal anode, the solvation behavior of the solvent molecules must be understood because the electrochemical properties of a solvent can be heavily influenced by its solvation status. We unambiguously demonstrated the solvation rule for the solid-electrolyte interphase (SEI) enabler in an electrolyte system. In this study, fluoroethylene carbonate was used as the SEI enabler due to its ability to form a robust SEI on the lithium metal surface, allowing relatively stable LMB cycling. The results revealed that the solvation number of fluoroethylene carbonate must be ≥1 to ensure the formation of a stable SEI in which the sacrificial reduction of the SEI enabler subsequently leads to the stable cycling of LMBs.  相似文献   

4.
刘德尧  尤金跨 《电化学》1999,5(3):276-280
利 用 X R D、 I C P、 T G A 、 D T A 及 恒 流 充 放 电 等 方 法 研 究 分 析 了 一 种 特 殊 天 然 结 构 Mn O2( N M D) 材料的结 构、组成 以及电 化学嵌锂 特性. X R D 分析 表明,该样 品材料 是由钠水 锰矿以及水羟 锰矿复 合结构组 成的 Mn O2 纳米 纤 维. 充放 电 循环 结果 显 示,其 前 期循 环容 量 可高 达 150m Ah/ g 左 右,但性 能尚不够 稳定. 本文采 用一种 水热法高 压嵌锂处 理,可将 N M D 样品 转变为 具有3 ×3 大隧道结 构的钡 镁锰矿( Todorokite) 型锂 锰氧 化 物,既 增 强了 Li + 嵌 入 隧道 或 层间 结 构 的循环稳定 性. 并 显著提 高锂锰氧 化物电 极材料性 能的 稳定 性,以 充放 电电 流密 度 为0 .8 m A/c m 2 ,经过180 次 循环后 其比容量 仍具有 110 m Ah/ g . 该类 大隧道结 构锂锰 氧化物可 作为一 种3 V 的锂离子电极 材料.  相似文献   

5.
采用二甲基亚砜(DMSO)作为锂二次电池的电解液, 研究了锂在DMSO中的沉积形貌和循环效率. 比较了六氟磷酸锂(LiPF6)在DMSO、 碳酸丙烯酯(PC)和1,3-二氧环戊烷(DOL)3种溶剂中的沉积形貌和循环效率, 并研究了LiPF6、 四氟硼酸锂(LiBF4)、 高氯酸锂(LiClO4)和二(三氟甲基磺酰)亚胺锂(LiTFSI)4种锂盐在DMSO中的沉积形貌和循环效率. 结果表明, 锂在DMSO中沉积得到的表面光滑平整且致密均匀, 循环效率在前10周要高于在PC中的, 溶剂DMSO有望用于金属锂二次电池中.  相似文献   

6.
The composition of the solid electrolyte interphase (SEI) on graphite anodes is characterized within a comparative surface analytical study varying systematically the electrolyte composition and the cycling conditions. In particular, the conducting salts lithium hexafluorophosphate and lithium bis(trifluoromethanesulfonyl)imide as well as vinylene carbonate and 1‐fluoroethylene carbonate as different electrolyte additives are compared regarding the SEI formation under different cycling conditions. A comprehensive study using X‐ray photoelectron spectroscopy revealed pronounced differences of the SEI compositions at different aging stages. Both additives significantly influence the SEI composition and are able to prevent from parasitic side reactions as well as from decomposition of the conducting salt lithium hexafluorophosphate. This study suggests a promising approach to improve the SEI properties to enhance long‐term stability of lithium‐ion batteries by changing the electrolyte composition. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
通过硝酸锰和乙醇的水热反应在三聚氰胺泡棉(MF)上生成三氧化二锰颗粒,氮气下高温处理后形成锰氧化物负载碳氮三维网络结构的复合物。碳氮网络结构提高了充放电过程中材料结构的稳定性及导电性,且烧结过程中产生的孔道结构有利于锂离子传输,使得该复合材料作为负极在锂离子电池中表现出优异的充放电性能和循环稳定性。材料的比容量和循环稳定性大大提高,经500℃处理后的MnO/CNnws-500材料在160次循环后仍然保留590 m Ah·g~(-1)的比容量,达到氧化亚锰理论容量755 m Ah·g~(-1)的78%。  相似文献   

8.
通过硝酸锰和乙醇的水热反应在三聚氰胺泡棉(MF)上生成三氧化二锰颗粒,氮气下高温处理后形成锰氧化物负载碳氮三维网络结构的复合物。碳氮网络结构提高了充放电过程中材料结构的稳定性及导电性,且烧结过程中产生的孔道结构有利于锂离子传输,使得该复合材料作为负极在锂离子电池中表现出优异的充放电性能和循环稳定性。材料的比容量和循环稳定性大大提高,经500℃处理后的MnO/CNnws-500材料在160次循环后仍然保留590 mAh·g-1的比容量,达到氧化亚锰理论容量755 mAh·g-1的78%。  相似文献   

9.
The rapid development of advanced energy‐storage devices requires significant improvements of the electrode performance and a detailed understanding of the fundamental energy‐storage processes. In this work, the self‐assembly of two‐dimensional manganese oxide nanosheets with various metal cations is introduced as a general and effective method for the incorporation of different guest cations and the formation of sandwich structures with tunable interlayer distances, leading to the formation of 3D MxMnO2 (M=Li, Na, K, Co, and Mg) cathodes. For sodium and lithium storage, these electrode materials exhibited different capacities and cycling stabilities. The efficiency of the storage process is influenced not only by the interlayer spacing but also by the interaction between the host cations and shutter ions, confirming the crucial role of the cations. These results provide promising ideas for the rational design of advanced electrodes for Li and Na storage.  相似文献   

10.
The physical and electrolytic properties of difluorinated dimethyl carbonate (DFDMC) synthesized using F2 gas (direct fluorination) were examined. The dielectric constant and viscosity of DFDMC are higher than those of monofluorinated dimethyl carbonate (MFDMC) and dimethyl carbonate (DMC). The oxidative decomposition voltage of DFDMC is higher than those of DMC and MFDMC. The specific conductivity in DFDMC solution is considerably lower than those in MFDMC and DMC solutions. The ethylene carbonate (EC)-DFDMC equimolar binary solution containing 1 mol dm−3 LiPF6 shows a moderate conductivity of 6.91 mS cm−1 at 25 °C. The lithium electrode cycling efficiency (charge-discharge coulombic cycling efficiency of lithium electrode) in EC-DFDMC equimolar binary solution containing 1 mol dm−3 LiPF6 is higher than 80%. The EC-DFDMC solution is a good electrolyte for rechargeable lithium batteries.  相似文献   

11.
Lithium metal is an ideal electrode material for future rechargeable lithium metal batteries. However, the widespread deployment of metallic lithium anode is significantly hindered by its dendritic growth and low Coulombic efficiency, especially in ester solvents. Herein, by rationally manipulating the electrolyte solvation structure with a high donor number solvent, enhancement of the solubility of lithium nitrate in an ester-based electrolyte is successfully demonstrated, which enables high-voltage lithium metal batteries. Remarkably, the electrolyte with a high concentration of LiNO3 additive presents an excellent Coulombic efficiency up to 98.8 % during stable galvanostatic lithium plating/stripping cycles. A full-cell lithium metal battery with a lithium nickel manganese cobalt oxide cathode exhibits a stable cycling performance showing limited capacity decay. This approach provides an effective electrolyte manipulation strategy to develop high-voltage lithium metal batteries.  相似文献   

12.
Lithium metal is an ideal electrode material for future rechargeable lithium metal batteries. However, the widespread deployment of metallic lithium anode is significantly hindered by its dendritic growth and low Coulombic efficiency, especially in ester solvents. Herein, by rationally manipulating the electrolyte solvation structure with a high donor number solvent, enhancement of the solubility of lithium nitrate in an ester‐based electrolyte is successfully demonstrated, which enables high‐voltage lithium metal batteries. Remarkably, the electrolyte with a high concentration of LiNO3 additive presents an excellent Coulombic efficiency up to 98.8 % during stable galvanostatic lithium plating/stripping cycles. A full‐cell lithium metal battery with a lithium nickel manganese cobalt oxide cathode exhibits a stable cycling performance showing limited capacity decay. This approach provides an effective electrolyte manipulation strategy to develop high‐voltage lithium metal batteries.  相似文献   

13.
《化学:亚洲杂志》2017,12(17):2284-2290
This work demonstrates a facile in situ synthesis of cobalt–manganese mixed sulfide (CoMn‐S) nanocages on reduced graphene oxide (RGO) sheets by using a crystalline Co–Mn precursor as the sacrificial template. The CoMn‐S/RGO hybrid was applied as the anode for Li‐ion storage and exhibited superior specific capacity, excellent cycling performance, and great rate capability. In particular, lithium storage testing revealed that the hybrid delivered high discharge–charge capacities of 670 mA h g−1 at 1.0 A g−1 after 400 cycles and 925 mA h g−1 at 0.1 A g−1 after 300 cycles. The outstanding electrochemical performance of CoMn‐S/RGO is attributed to the close entanglement of nanocages with RGO nanosheets achieved by the synthetic method, which greatly improves ion/electron transport along the interfaces and efficiently mitigates volume dilation during lithium reactions. This rational design of both the composition and architecture of mixed metal sulfides can be expanded to other composite systems for high‐capacity Li‐ion batteries and provides a unique insight into the development of advanced hybrid electrode materials.  相似文献   

14.
Pure-phase CoO octahedral nanocages were successfully fabricated by a novel simple method. The coordination etching agents play key roles in the formation of these non-spherical hollow structures. When tested as anode materials in lithium ion batteries (LIBs), these nanocages showed excellent cycling performance, good rate capability and enhanced lithium storage capacity.  相似文献   

15.
Nanostructured lithium manganese oxide with spherical particles was synthesized via ultrasonic spray pyrolysis technique. The material shows a pronounced stability upon prolonged cycling at room temperature at high charge–discharge rates up to 10C. The electrochemical performance of the cell at elevated temperature was remarkably improved by addition of AlPO4 to the electrolyte. The AC impedance spectroscopy study showed the interface stabilization by the AlPO4 additives and the suppression of the interface impedance development upon prolonged cycling.  相似文献   

16.
Although lithium–oxygen batteries possess a high theoretical energy density and are considered as promising candidates for next‐generation power systems, the enhancement of safety and cycling efficiency of the lithium anodes while maintaining the high energy storage capability remains difficult. Here, we overcome this challenge by cross‐stacking aligned carbon nanotubes into porous networks for ultrahigh‐capacity lithium anodes to achieve high‐performance lithium–oxygen batteries. The novel anode shows a reversible specific capacity of 3656 mAh g?1, approaching the theoretical capacity of 3861 mAh g?1 of pure lithium. When this anode is employed in lithium–oxygen full batteries, the cycling stability is significantly enhanced, owing to the dendrite‐free morphology and stabilized solid–electrolyte interface. This work presents a new pathway to high performance lithium–oxygen batteries towards practical applications by designing cross‐stacked and aligned structures for one‐dimensional conducting nanomaterials.  相似文献   

17.
36 kinds of mixed carbonate molten salts were prepared by mixing potassium carbonate, lithium carbonate, sodium carbonate in accordance with different proportions. The data of melting point and latent heat are measured by the analysis of DSC curves of 36 kinds of salts, which show that the majority of ternary carbonate’s melting points are close at around 400 °C. 24 kinds of eutectic molten salts were selected among 36 kinds of molten salts. With high latent heat, ternary carbonate salt has the potential to be employed for phase change thermal storage. The costs for phase change thermal storage of 24 kinds of carbonate salts are calculated. Finally, 13 kinds of ternary carbonate salts with lower cost for phase change thermal storage are recommended, where there are 6 kinds of mixed carbonates have the considerably larger latent heat of melting.  相似文献   

18.
Solubilization of SEI lithium salts in alkylcarbonate solvents   总被引:1,自引:0,他引:1  
The SEI (Solid Electrolyte Interphase) at the surface of electrodes in lithium-ion batteries is composed of various lithium compounds, organic or mineral, which have a direct impact on cycling performance. The main lithium species constituting the SEI and selected in this study are lithium fluoride LiF, lithium carbonate Li2CO3, lithium hydroxide LiOH, lithium oxide Li2O, lithium methoxide LiOCH3 and lithium ethoxide LiOC2H5. Their solubilities were determined in ethylene, propylene, dimethyl, diethyl and vinylene carbonates (EC, PC, DMC, DEC and VC) and in one of their mixtures commonly used in lithium-ion batteries (EC/PC/3DMC) by mean of atomic absorption spectroscopy (AAS). These solutions were also investigated by EIS (Electrochemical Impedance Spectroscopy) and conductimetry measurements. Results show that while solubilization properties differ between LiF and other lithium compounds considered, their association pattern in solution is identical and solutions are mainly constituted of quadrupolar aggregates.  相似文献   

19.
We demonstrate, through structural refinement from synchrotron X-ray diffraction data, that the mechanism of the transformation between lithium amide and lithium imide during hydrogen cycling in the important Li-N-H hydrogen storage system is a bulk reversible reaction that occurs in a non-stoichiometric manner within the cubic anti-fluorite-like Li-N-H structure.  相似文献   

20.
The effect of lithium and manganese ions on the synthesis, phase purity, and electrochemical properties of tartaric acid gel processed lithium manganese oxide spinel were investigated. The poor bonding between both lithium and manganese ions with tartaric acid was shown by the FT-IR analysis when lithium nitrate and/or manganese nitrate were used as sources. Li2MnO3 and Mn2O3 impurities formed in addition to lithium manganese oxides when nitrate salts were used as the sources. When acetate salts were used as sources for the lithium and manganese ions, single-phase LiMn2O4 was obtained. These results indicate that homogeneous bonding between acetate salt and tartaric acid was formed. The capacity of single-phase LiMn2O4 calcined at 500°C was 117 mAh/g which was much higher than those containing Mn2O3 and Li2MnO3 impurity compounds. Thus, sources of lithium and manganese ions play an important role in the synthesis and electrochemical behaviors of lithium manganese oxide spinel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号