首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the precipitation pH and subsequent heat treatment is studied on the properties of hydrous zirconium dioxide precipitated by ammonia from nitrate solutions. Precipitation at pH ≤ 6 generates hydrous zirconium dioxide, which contains excess sorbate nitrate ions; the product precipitated at pH ≥ 7 contains excess ammonium ions. This distinction considerably affects the course of thermolysis and the morphology of products. The exotherm associated with the formation of the crystal structure of zirconia becomes more pronounced with rising precipitation pH. In addition, the samples prepared at pH ≥ 7 have a more developed surface. The morphologic and microstructural evolution of hydrous zirconium dioxide samples during thermolysis is described.  相似文献   

2.
Coupled with XRD, BET, and TEM, the small-angle X-ray scattering (SAXS) technique has been effectively used to probe and characterize the submicrostructure of freshly precipitated hydrous zirconia and its evolution during digestion. It has been found that fresh hydrous zirconia particles possess an average diameter of about 5 nm and rather rough surfaces describable in terms of fractal concepts. The digestion of zirconia precipitates at 100 degrees C with their mother liquors may remarkably smooth the particles' rough surface and provoke fractal aggregation of the particles but make little change in average particle dimensions. A local dissolution-reprecipitation mechanism is regarded as a basic process to accompany particle surface smoothing, particle aggregation, and coarsening at the neck areas between joint particles, which may greatly strengthen the particle networks and enhance their resistance to crumbling while calcinated at high temperatures. On the basis of the submicrostructural features unraveled by SAXS, a coherent and significant physical picture has been raised out to demonstrate and interpret the relationship underlying the submicrostructure, the surface area variation, and the heating behavior of hydrous zirconia precipitates.  相似文献   

3.
The radionuclides phosphorus-32, arsenic-74, iron-59 and molybdenum-99 were used to determine the effect-of arsenate and some transition-metal ions on the precipitation of phosphorus as ammonium 12-molybdophosphate. Under the conditions necessary for the quantitative precipitation of phosphorus, arsenic is also precipitated by ammonium molybdate. The presence of iron(III) nitrate inhibits the precipitation of phosphorus and, particularly, arsenic, although the precipitates contain more molybdenum, and are heavier, than when iron is absent. Chromium (111) nitrate, nickel(II) nitrate and manganese(II) nitrate do not inhibit the precipitation of phosphorus and arsenic to the same extent as iron (III) nitrate.  相似文献   

4.
Hybrid particles containing different hydrophilic metal salts such as tetrafluoroborates of iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), and nitrates of cobalt(II), nickel(II), copper(II), zinc(II), and iron(III), and cobalt(II) chloride were synthesized via inverse miniemulsion polymerization of 2-hydroxyethyl methacrylate (HEMA). All salts delivered narrowly size-distributed hybrid particles with the exception of iron(III), where only the nitrate salt could be successfully employed. The size and size distribution of the hybrid particles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The particle morphology and the distribution of salt in the dried particles were observed by TEM. The influences of the type of metal salts and salt content on the particle size distribution were extensively investigated.  相似文献   

5.
提出了一种简便易行的对磁性纳米粒子表面进行氨基化的方法. 首先使用化学共沉淀法合成了粒径为10 nm左右的Fe3O4纳米粒子, 然后用阿仑膦酸钠对其表面进行修饰, 使其表面具有了功能化的氨基. 利用透射电子显微镜(TEM)、X射线衍射(XRD)、振动样品磁强计(VSM)、动态光散射(DLS)仪、热重分析(TGA)仪、傅里叶变换红外(FT-IR)光谱仪、X射线光电子能谱(XPS)仪等对其进行表征. 结果显示磁性纳米粒子表面被成功地修饰了一层双膦酸分子. 所制备的纳米粒子可在pH=6.3稳定存在4周以上.  相似文献   

6.
Monodisperse microgel latex with homogeneous cross-link density distribution within the particles was prepared by feeding the monomer and cross-linker into the reaction mixture in a regulated way during the polymerization. To determine the appropriate monomer feeding parameters, the kinetics of the particle formation was investigated by HPLC. The swelling and optical characteristics of the prepared homogenously cross-linked microgel particles were compared to the properties of inhomogenously cross-linked microgels prepared by the normal precipitation polymerization method. The distribution of the cross-link density within the particles inserts a great influence on the characteristics of the system. The degree of swelling of the homogeneous particles is significantly higher than that of the heterogeneous microgel particles. Furthermore, at room temperature the pNIPAm latex containing the homogeneously cross-linked particles is transparent, while the heterogeneously cross-linked particles form a highly turbid system at the same 0.1 wt% concentration.  相似文献   

7.
In the developing countries where the cost is often a decisive factor, extensive studies were undertaken to test the most effective factors on the preparation, optimization and validation of the magnetic particles (or, more accurately, magnetizable particles) for removal of heavy metals from wastewaters. The objective of the proposed work was focused to provide promising solid-phase materials, which, are relatively in expensive and combine high surface capacity with fast efficient treatment. Four various metal oxides including hydrous ferric oxide (HFO), hydrous stannic oxide (HSO) and mixed ferric/stannic oxide (HMO), were prepared by precipitation with ammonia from metal chloride solutions. Two mixed oxides were prepared with different Sn/Fe ratios of 50% and 20%. Optimal conditions for the activation of these particles and the subsequent mixing of various metals oxides are tested together with the utility of the method to get a new composite material with developed chemical characteristics over their individual metal oxides. Factors affecting the sorption behavior of the prepared samples in basic and acid media were elucidated. The magnetic treatment procedure using the mixed oxide (50%) enables the equilibration step to be carried out rapidly mainly due to ferric oxide during the magnetization process and efficiently due to high capacity of the stannic oxide. A key factor in achieving very high uptake percentage is the reduction of non-specific binding of various heavy metals to the solid phase support. This is usually achieved by increasing the ion exchange capability, in addition to their adsorption process.  相似文献   

8.
Iron(III) hydroxide was precipitated from the homogeneous solutions, containing variuos amounts of iron(III) nitrate, potassium sulfate, and urea, by heating at 85 °C for different periods of time (5‐30 min). The precipitated solids were either in the form of gel or dispersed particles of different shapes and sizes, depending upon the composition of the reactant mixtures. The as‐prepared solids were amorphous in nature and were formulated as Fe(OH)3.H2O. On calcinations at 800 °C for 1 h, the latter converted into crystalline compound, composed of α‐Fe2O3 (hematite). The calcined particles retained the original features of their precursors to a maximum extent.  相似文献   

9.
Superparamagnetic nanoparticles were prepared by coprecipitation of ferrous (Fe(2+)) and ferric (Fe(3+)) aqueous solution by a base. Nanomagnetite particles were coated with poly(St/PEG-EEM/DMAPM) and poly(St/PEG-MA/DMAPM) layer by emulsifier-free emulsion polymerization. Chemical structure of nanoparticles was characterized by both FTIR and (1)H NMR. Particle morphologies were determined by Zeta Sizer, DLS, XRD and SAXS. Structural analysis showed that after polymer coating nanomagnetite particles kept their superparamagnetic property. Besides the synthesized magnetites, polymer coated forms of these particles are more biocompatible, well dispersable and uniform. These properties make them a very strong candidate for bioengineering applications, such as bioseparation, gene transfer.  相似文献   

10.
Crystals of the title compounds were grown from their hydrous melts or solutions. The crystal structure of iron(III) trinitrate hexahydrate {hexaaquairon(III) trinitrate, [Fe(H2O)6](NO3)3} is built up from [Fe(H2O)6]2+ octahedra and nitrate anions connected via hydrogen bonds. In iron(III) trinitrate pentahydrate {pentaaquanitratoiron(III) dinitrate, [Fe(NO3)(H2O)5](NO3)2}, one water molecule in the coordination octahedron of the FeIII atom is substituted by an O atom of a nitrate group. Iron(III) trinitrate tetrahydrate {triaquadinitratoiron(III) nitrate monohydrate, [Fe(NO3)2(H2O)3]NO3·H2O} represents the first example of a simple iron(III) nitrate with pentagonal–bipyramidal coordination geometry, where two bidentate nitrate anions and one water molecule form a pentagonal plane.  相似文献   

11.
Summary The precipitation titration of the nitrito complexes of Ir(III), Pt(II), and Pd(II) vs. cetylpyridinium chloride is reported. The corresponding cyanide complexes of these precious metals are also precipitated by silver nitrate, which does not react with the nitrito complexes. Differentiation of the 2 types of complexes is, therefore, possible. Sequential estimation of the cyanide complexes and some anions such as bromide, cyanide, and aurocyanide is feasible with silver nitrate.
Potentiometrische Titration und Differenzierung von Cyano- und Nitrito-Komplexen von Ir(III), Pt(II) und Pd(II)

Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48  相似文献   

12.
Nanocomposite materials containing 10% and 20% iron oxide/silica, Fe2O3/SiO2 (w/w), were prepared by direct hydrolysis of aqueous iron III nitrate solution in sols of freshly prepared spherical silica particles (St?ber particles) present in their mother liquors. This was followed by aging, drying, calcination up to 600 degrees C through two different ramp rates, and then isothermal calcinations at 600 degrees C for 3 h. The calcined and the uncalcined (dried at 120 degrees C) composites were characterized by thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), N2 adsorption/desorption techniques, and scanning electron microscopy as required. XRD patterns of the calcined composites showed no line broadening at any d-spacing positions of iron oxide phases, thereby reflecting the amorphous nature of Fe2O3 in the composite. The calcined composites showed nitrogen adsorption isotherms characterizing type IV isotherms with high surface area. Moreover, surface area increased with the increasing of the iron oxide ratio and lowering of the calcination ramp rate. Results indicated that iron oxide particles were dispersed on the exterior of silica particles as isolated and/or aggregated nanoparticles. The formation of the title composite was discussed in terms of the hydrolysis and condensation mechanisms of the inorganic FeIII precursor in the silica sols. Thereby, fast nucleation and limited growth of hydrous iron oxide led to the formation of nanoparticles that spread interactively on the hydroxylated surface of spherical silica particles. Therefore, a nanostructured composite of amorphous nanoparticles of iron oxide (as a shell) spreading on the surface of silica particles (as a core) was formed. This morphology limited the aggregation of Fe2O3 nanoparticles, prevented silica particle coalescence at high temperatures, and enhanced thermal stability.  相似文献   

13.
Fuhrman DL  Latimer GW 《Talanta》1967,14(11):1199-1203
Chromic acid is analysed for tervalent chromium by separation of Cr(III) from Cr(VI) by precipitation as the hydrous oxide, with Zn(OH)(2) as a carrier. The hydrous oxide is collected by centrifugation and dissolved in perchloric acid, then Cr(III) is complexed with 1,2-diaminocyclohexanetetra-acetic acid and measured spectrophotometrically at 540 mmicro. Repetitive analysis of a sample of chromic acid showed 93 ppm of Cr(III) (s = 13, n = 9). Iron in chromic acid is also separated as the hydrous oxide, then dissolved in HCl, reduced to Fe(II) with hydroxylamine hydrochloride, complexed with bathophenanthroline disulphonic acid and measured spectrophotometrically at 533 mmicro. Repetitive analyses of a sample of chromic acid showed 2-6 ppm of iron (s = 0.35, n = 8).  相似文献   

14.
 A procedure to prepare submicrometre spherical particles of Pr(III), Ce(III) or Pr(III)-doped C(III) hydroxycarbonates with narrow size distribution is reported. The particles were obtained by aging aqueous solutions of Pr(III) chloride and/or Ce(III) nitrate in the presence of urea at 100 °C for 2 h. The effect of Pr and/or Ce salt concentrations in the starting solutions on the size, shape and composition of the precipitated particles is reported. The thermal behaviour of the basic carbonates up to decomposition into the metal oxides was followed by differential thermal and thermogravimetric analyses, X-ray diffraction, IR spectroscopy and transmission electron microscopy. All the systems were also characterized by their electrokinetic behaviour (determination of isoelectric point) and specific surface areas. The colour of the powders was also evaluated as a function of the Pr content and temperature and was compared with previous results on red pigments of similar composition. Received: 30 May 2001 Revised: 17 September 2001 Accepted: 20 September 2001  相似文献   

15.
The precipitation of phosphate with quinolinium molybdate was studied by means of radioactive tracers, in relation to the excess of reagent, temperature of precipitation, etc. Precipitation is almost quantitative (99.3%) even with a stoichiometric amount of reagent added but an excess helps to minimise the inhibitory effects of certain ions, notably Fe3+ ; inhibitory effects are eliminated by digesting the solution for 2 h. Chromium(III) nitrate, nickel(II) nitrate and manganese(II) nitrate have relatively little effect on the precipitation of quinolinium molybdophosphate. Under the conditions required for the quantitative precipitation of phosphorus, arsenic is also quantitatively precipitated.Phosphate can be precipitated as lutidinium molybdophosphate using 2,4-, 2,5- or 2,6-lutidinium molybdate; the reagents are less efficient than quinolinium molybdate but can be used to precipitate phosphate under conditions which leave arsenate in solution.  相似文献   

16.
Pure maghemite, gamma-Fe(2)O(3), was prepared as ultra fine particles in the nanometer-sized range via the forced precipitation method in an organic solvent. The precipitation of iron(III) ions, from iron(III) chloride in 2-propanol led selectively to highly dispersed particles of ferrihydrite, which upon treatment with temperatures higher than 200 degrees C under dynamic vacuum resulted in high-surface-area particles of gamma-Fe(2)O(3). Precipitation in water also led to ferrihydrite, but the final product, after heating at 300 degrees C, contained a mixture of gamma-Fe(2)O(3) and alpha-Fe(2)O(3) (hematite). The precipitation from iron(III) nitrate in water resulted in goethite which was converted to hematite upon heating. On the other hand, the final product in 2-propanol was a mixture of maghemite and hematite. The products were characterized by FTIR, TGA, XRD, and gas sorption analysis. Nitrogen gas adsorption studies for the pure gamma-Fe(2)O(3) samples revealed mesoporous particles with high surface areas in the range of 70-120 m(2) g(-1) after heat treatment at 300 degrees C. The gamma-Fe(2)O(3) particles retained their gamma-phase as well as their mesoporous structure at relatively high temperatures, as high as 400 degrees C.  相似文献   

17.
Reactions of bromobenzene and chlorobenzene with methyl acrylate were carried out in N-methylpyrrolidone (NMP) over a conventional Pd/C catalyst under Heck coupling conditions indicating both heterogeneous and homogeneous character. Benzene and biphenyl are produced in addition to the Heck coupling product of methyl cinnamate. It is proposed that the formation of methyl cinnamate and biphenyl proceed homogeneously with dissolved palladium species, while the formation of benzene takes place heterogeneously on the surface of supported palladium particles or free colloidal particles formed during the reaction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
We have developed an improved small-angle X-ray scattering (SAXS) model and analysis methodology to quantitatively evaluate the nanostructures of a blend system. This method has been applied to resolve the various structures of self-organized poly(3-hexylthiophene)/C61-butyric acid methyl ester (P3HT/PCBM) thin active layer in a solar cell from the studies of both grazing-incidence small-angle X-ray scattering (GISAXS) and grazing-incidence X-ray diffraction (GIXRD). Tuning the various length scales of PCBM-related structures by a different annealing process can provide a flexible approach and better understanding to enhance the power conversion of the P3HT/PCBM solar cell. The quantitative structural characterization by this method includes (1) the mean size, volume fraction, and size distribution of aggregated PCBM clusters, (2) the specific interface area between PCBM and P3HT, (3) the local cluster agglomeration, and (4) the correlation length of the PCBM molecular network within the P3HT phase. The above terms are correlated well with the device performance. The various structural evolutions and transformations (growth and dissolution) between PCBM and P3HT with the variation of annealing history are demonstrated here. This work established a useful SAXS approach to present insight into the modeling of the morphology of P3HT/PCBM film. In situ GISAXS measurements were also conducted to provide informative details of thermal behavior and temporal evolution of PCBM-related structures during phase separation. The results of this investigation significantly extend the current knowledge of the relationship of bulk heterojunction morphology to device performance.  相似文献   

19.
The adsorption behaviour and mechanism of As(III) and Se(IV) oxyanion uptake using a mixed inorganic adsorbent were studied. The novel adsorbent, based on Fe(III)-Mn(III) hydrous oxides and manganese(II) carbonate, was synthesised using a hydrothermal precipitation approach in the presence of urea. The inorganic ion exchanger exhibited a high selectivity and adsorptive capacity towards As(III) (up to 47.6 mg/g) and Se(IV) (up to 29.0 mg/g), even at low equilibrium concentration. Although pH effects were typical for anionic species (i.e., the adsorption decreased upon pH increase), Se(IV) was more sensitive to pH changes than As(III). The rates of adsorption of both oxyanions were high. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) studies showed that the ion exchange adsorption of both anions took place via OH(-) groups, mainly from Fe(III) but also Mn(III) hydrous oxides. MnCO(3) did not contribute directly to As(III) and Se(IV) removal. A higher adsorptive capacity of the developed material towards As(III) was partly due to partial As(III) oxidation during adsorption.  相似文献   

20.
A method to calculate the location of all Bragg diffraction peaks from nanostructured thin films for arbitrary angles of incidence from just above the critical angle to transmission perpendicular to the film is reported. At grazing angles, the positions are calculated using the distorted wave Born approximation (DWBA), whereas for larger angles where the diffracted beams are transmitted though the substrate, the Born approximation (BA) is used. This method has been incorporated into simulation code (called NANOCELL) and may be used to overlay simulated spot patterns directly onto two-dimensional (2D) grazing angle of incidence small-angle X-ray scattering (GISAXS) patterns and 2D SAXS patterns. The GISAXS simulations are limited to the case where the angle of incidence is greater than the critical angle (alpha(i) > alpha(c)) and the diffraction occurs above the critical angle (alpha(f) > alpha(c)). For cases of surfactant self-assembled films, the limitations are not restrictive because, typically, the critical angle is around 0.2 degrees but the largest d spacings occur around 0.8 degrees 2theta. For these materials, one finds that the DWBA predicts that the spot positions from the transmitted main beam deviate only slightly from the BA and only for diffraction peaks close the critical angle. Additional diffraction peaks from the reflected main beam are observed in GISAXS geometry but are much less intense. Using these simulations, 2D spot patterns may be used to identify space group, identify the orientation, and quantitatively fit the lattice constants for SAXS data from any angle of incidence. Characteristic patterns for 2D GISAXS and 2D low-angle transmission SAXS patterns are generated for the most common thin film structures, and as a result, GISAXS and SAXS patterns that were previously difficult to interpret are now relatively straightforward. The simulation code (NANOCELL) is written in Mathematica and is available from the author upon request.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号