首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The complexes FeL(2) [L = bidentate Schiff base ligands obtained from (R)-(+)-α-phenylethanamine and 4-substituted salicylaldehydes, substituent R = H, (t)Bu, NO(2), OMe, CN, OH] react with ditopic proligands 1,4-pyrazine (pz) or 4,4'-bipyridine (bpy), to give a family of optically pure Fe(II) polymeric chain complexes of formula {FeL(2)(μ-pz)}(∞) and {FeL(2)(μ-bpy)}(∞). Crystallographic studies show that a range of structures are formed including unidirectional and bidirectional linear polymers and canted zigzag chains. Interchain interactions via π-contacts and hydrogen bonding are also observed. SQuID magnetometry studies on all of the complexes reveal antiferromagnetic interactions, the magnitudes of which are rationalized on the basis of substituent electronic properties and bridging ligand identity. For complexes with bridging pz, the antiferromangnetic interaction is enhanced by electron-releasing substituents on the Fe units, and this is accompanied by a contraction in the intrachain distance. For complexes bridged with the longer bpy the intrachain antiferromagnetic couplings are much weaker as a result of the longer intrachain distance. The magnetic data for this series of chain complexes follow a Bonner-Fisher 1D chain model, alongside a zero field splitting (ZFS) model for Fe(II) (S = 2) as appropriate. The intrachain antiferromagnetic coupling J values, g-factors, and the axial ZFS parameter D were obtained.  相似文献   

2.
Two novel mononuclear five-coordinate nickel complexes with distorted square-pyramidal geometries are presented. They result from association of a tridentate "half-unit" ligand and 6,6'-dimethyl-2,2'-bipyridine according to a stepwise process that highlights the advantage of coordination chemistry in isolating an unstable tridentate ligand by nickel chelation. Their zero-field splittings (ZFS) were studied by means of magnetic data and state-of-the-art ab initio calculations. Good agreement between the experimental and theoretical axial D parameters confirms that large single-ion nickel anisotropies are accessible. The synthetic process can also yield dinuclear nickel complexes in which the nickel ions are hexacoordinate. This possibility is facilitated by the presence of phenoxo oxygen atoms in the tridentate ligand that can introduce a bridge between the two nickel ions. Two different double bridges are characterized, with the bridging oxygen atoms coming from each nickel ion or from the same nickel ion. This coordination change introduces a difference in the antiferromagnetic interaction parameter J. Although the magnetic data confirm the presence of single-ion anisotropies in these complexes, these terms cannot be determined in a straightforward way from experiment due to the mismatch between the principal axes of the local anisotropies and the presence of intersite anisotropies.  相似文献   

3.
Pentacoordinate complexes in which Ni(II) is chelated by the tridentate macrocyclic ligand 1,4,7-triisopropyl-1,4,7-triazacyclononane (iPrtacn) of formula [Ni(iPrtacn)X(2)] (X=Cl, Br, NCS) have relatively large magnetic anisotropies, revealed by the large zero-field splitting (zfs) axial parameters |D| of around 15 cm(-1) measured by frequency-domain magnetic resonance spectroscopy (FDMRS) and high-field high-frequency electron paramagnetic resonance (HF-HFEPR). The spin Hamiltonian parameters for the three complexes were determined by analyzing the FDMRS spectra at different temperatures in zero applied magnetic field in an energy window between 0 and 40 cm(-1). The same parameters were determined from analysis of HF-HFEPR data measured at different frequencies (285, 380, and 475 GHz) and at 7 and 17 K. The spin Hamiltonian parameters D (axial) and E (rhombic) were calculated for the three complexes in the framework of the angular overlap model (AOM). The nature and magnitude of the magnetic anisotropy of the three complexes and the origin of the influence of the X atoms were analyzed by performing systematic calculations on model complexes.  相似文献   

4.
A multitechnique approach has allowed the first experimental determination of single-ion anisotropies in a large iron(III)-oxo cluster, namely [NaFe6(OCH3)12(pmdbm)6ClO4 (1) in which Hpmdbm = 1,3-bis(4-methoxyphenyl)-1,3-propanedione. High-frequency EPR (HF-EPR). bulk susceptibility measurements, and high-field cantilever torque magnetometry (HF-CTM) have been applied to iron-doped samples of an isomorphous hexagallium(III) cluster [NaGa6(OCH3)12-(pmdbm)6]ClO4, whose synthesis and X-ray structure are also presented. HF-EPR at 240 GHz and susceptibility data have shown that the iron(III) ions have a hard-axis type anisotropy with DFe = 0.43(1) cm(-1) and EFe = 0.066(3) cm(-1) in the zero-field splitting (ZFS) Hamiltonian H = DFe[S2(z) - S(S + 1)/3] + Fe[S2(x) - S2(y)]. HF-CTM at 0.4 K has then been used to establish the orientation of the ZFS tensors with respect to the unique molecular axis of the cluster, Z. The hard magnetic axes of the iron(III) ions are found to be almost perpendicular to Z, so that the anisotropic components projected onto Z are negative, DFe(ZZ)= -0.164(4) cm(-1). Due to the dominant antiferromagnetic coupling, a negative DFe(ZZ) value determines a hard-axis molecular anisotropy in 1, as experimentally observed. By adding point-dipolar interactions between iron(III) spins, the calculated ZFS parameter of the triplet state, D1 = 4.70(9) cm(-1), is in excellent agreement with that determined by inelastic neutron scattering experiments at 2 K, D1 = 4.57(2) cm(-1). Iron-doped samples of a structurally related compound, the dimer [Ga2(OCH3)2(dbm)4] (Hdbm = dibenzoylmethane), have also been investigated by HF-EPR at 525 GHz. The single-ion anisotropy is of the hard-axis type as well, but the DFe parameter is significantly larger [DFe = 0.770(3) cm(-1). EFe = 0.090(3) cm(-1)]. We conclude that, although the ZFS tensors depend very unpredictably on the coordination environment of the metal ions, single-ion terms can contribute significantly to the magnetic anisotropy of iron(III)-oxo clusters, which are currently investigated as single-molecule magnets.  相似文献   

5.
Two organic ligands based on a sugar-scaffold derived from galactose and possessing three O-CH(2)-pyridine pendant arms at the 3-, 4-, and 5-positions of the galactopyranose that act as chelates afford mononuclear complexes when reacted with a Ni(II) salt. The magnetization behavior in the form of M=f(H/T) plots suggests the presence of appreciable magnetic anisotropy within the two complexes. The analysis of the EPR spectra performed at two different temperatures (7 and 17 K) and at three frequencies (190, 285, and 380 GHz) leads to the conclusion that the anisotropy has a high degree of axiality (E/D=0.17 for the two complexes), but with a different sign of the D parameter. The spin hamiltonian parameters D and E were reproduced for the two complexes by using calculations based on the angular overlap model (AOM). The structural difference between the two complexes responsible of the sign of the D parameters was also determined using AOM calculations. A thorough analysis of the structures showed that the structural differences in the coordination sphere of the two complexes responsible of the different D parameter sign result from the nature of the sugar scaffolds. In complex 1, the sugar scaffold imposes an intramolecular hydrogen bond with one of the atoms linked to Ni(II); this arrangement leads to a distorted coordination sphere and positive D value, while the absence of such a hydrogen bond in complex 2 leads to a less distorted environment around the Ni center and to a negative D value.  相似文献   

6.
The synthesis of a new Ni(II)-Y(III) binuclear complex with a marked elongation axis in the first coordination sphere of the Ni(II) ion is presented. Its zero-field splitting (ZFS) is studied by means of magnetic data and state-of-the-art ab initio calculations. A good agreement between the experimental and theoretical ZFS parameter values is encountered, validating the whole approach. The magnetic anisotropy axes are extracted from the ab initio calculations, showing that the elongation axis around the Ni(II) ion corresponds to the hard axis of magnetization and that the sign of the axial D parameter is imposed by this axis. The Ni-Y axis is found to be an easy axis of magnetization, which is, however, not significant according to the sign of D. The already reported [(H(2)O)Ni(ovan)(2)(μ-NO(3))Y(ovan)(NO(3))]·H(2)O (ovan = o-vanillin) complex is then revisited. In this case, the elongation axis in the Ni(II) coordination sphere is less marked and the ZFS is dominated by the effect of the Y(III) ion belonging to the second coordination sphere. As a consequence, the D parameter is negative and the low-temperature behavior is dominated by the Ni-Y easy axis of magnetization. A competition between the first coordination sphere of the Ni(II) ion and the electrostatic effect of the Y(III) ion belonging to the second coordination sphere is then evidenced in both complexes, and the positive and negative D parameters are then linked to the relative importance of both effects in each complex.  相似文献   

7.
High-spin organic molecules with dominant spin-orbit contribution to magnetic anisotropy are reported. Quintet 4-azido-3,5-dibromopyridyl-2,6-dinitrene (Q-1), quintet 2-azido-3,5-dibromopyridyl-4,6-dinitrene (Q-2), and septet 3,5-dibromopyridyl-2,4,6-trinitrene (S-1) were generated in solid argon matrices by ultraviolet irradiation of 2,4,6-triazido-3,5-dibromopyridine. The zero-field splitting (ZFS) parameters, derived from electron spin resonance spectra, show unprecedentedly large magnitudes of the parameters D: ∣D(Q1)∣ = 0.289, ∣D(Q2)∣ = 0.373, and ∣D(S1)∣ = 0.297 cm(-1). The experimental ZFS parameters were successfully reproduced by density functional theory calculations, confirming that magnetic anisotropy of high-spin organic molecules can considerably be enhanced by the "heavy atom effect." In bromine-containing high-spin nitrenes, the spin-orbit term is dominant and governs both the magnitude and the sign of magnetic anisotropy. The largest negative value of D among septet trinitrenes is predicted for 1,3,5-trinitrenobenzene bearing three heavy atoms (Br) in positions 2, 4, and 6 of the benzene ring.  相似文献   

8.
A new tetragonal (P42(1)2) crystalline form of [Cr8F8Piv16] (HPiv = pivalic acid, trimethyl acetic acid) is reported. The ring-shaped molecules, which are aligned in a parallel fashion in the unit cell, form almost perfectly planar, regular octagons. The interaction between the CrIII ions is antiferromagnetic (J = 12 cm(-1)) which results in a S = 0 spin ground state. The low-lying spin excited states were investigated by cantilever torque magnetometry (CTM) and high-frequency EPR (HFEPR). The compound shows hard-axis anisotropy. The axial zero-field splitting (ZFS) parameters of the first two spin excited states (S = 1 and S = 2, respectively) are D1 = 1.59(3) cm(-1) or 1.63 cm(-1) (from CTM and HFEPR, respectively) and D2 = 0.37 cm(-1) (from HFEPR). The dipolar contributions to the ZFS of the S = 1 and S = 2 spin states were calculated with the point dipolar approximation. These contributions proved to be less than the combined single-ion contributions. Angular overlap model calculations that used parameters obtained from the electronic absorption spectrum, showed that the unique axis of the single-ion ZFS is at an angle of 19.3(1) degrees with respect to the ring axis. The excellent agreement between the experimental and the theoretical results show the validity of the used methods for the analysis of the magnetic anisotropy in antiferromagnetic CrIII rings.  相似文献   

9.
A rational approach to modulating easy-axis magnetic anisotropy by varying the axial donor ligand in heptacoordinated FeII complexes has been explored. In this series of complexes with formulae of [Fe(H4L)(NCS)2] ⋅ 3 DMF ⋅ 0.5 H2O ( 1 ), [Fe(H4L)(NCSe)2] ⋅ 3 DMF ⋅ 0.5 H2O ( 2 ), and [Fe(H4L)(NCNCN)2] ⋅ DMF ⋅ H2O ( 3 ) [H4L=2,2′-{pyridine-2,6-diylbis(ethan-1-yl-1-ylidene)}bis(N-phenylhydrazinecarboxamide)], the axial positions are successively occupied by different nitrogen-based π-donor ligands. Detailed dc and ac magnetic susceptibility measurements reveal the existence of easy-axis magnetic anisotropy for all of the complexes, with 1 [Ueff=21 K, τ0=1.72×10−6 s] and 2 [Ueff=25 K, τ0=2.25×10−6 s] showing field-induced slow magnetic relaxation behavior. However, both experimental studies and theoretical calculations indicate the magnitude of the D value of complex 3 to be larger than those of complexes 1 and 2 due to the axial bond angle being smaller than that for an ideal geometry. Detailed analysis of the field and temperature dependences of relaxation time for 1 and 2 has revealed that multiple relaxation processes (quantum tunneling of magnetization, direct, and Raman) are involved in slow magnetic relaxation for both of these complexes. Magnetic dilution experiments support the role of intermolecular short contacts.  相似文献   

10.
High-spin molecules with easy-axis magnetic anisotropy show slow magnetic relaxation of spin-flipping along the axis of magnetic anisotropy and are called single-molecule magnets (SMMs). SMMs behave as molecular-size permanent magnets at low temperature and magnetic relaxation occurs by quantum tunneling processes; such molecules are promising candidates for use in quantum devices. We first discuss intramolecular ferromagnetic interactions for preparing high-spin molecules. Second, we determine the magnetic anisotropy for single metal ions with d(n) configurations and discuss how molecular anisotropy arises from single-ion anisotropy of the assembled component metal ions.  相似文献   

11.
A theoretical, computational, and conceptual framework for the interpretation and prediction of the magnetic anisotropy of transition metal complexes with orbitally degenerate or orbitally nearly degenerate ground states is explored. The treatment is based on complete active space self-consistent field (CASSCF) wave functions in conjunction with N-electron valence perturbation theory (NEVPT2) and quasidegenerate perturbation theory (QDPT) for treatment of magnetic field- and spin-dependent relativistic effects. The methodology is applied to a series of Fe(II) complexes in ligand fields of almost trigonal pyramidal symmetry as provided by several variants of the tris-pyrrolylmethyl amine ligand (tpa). These systems have recently attracted much attention as mononuclear single-molecule magnet (SMM) complexes. This study aims to establish how the ligand field can be fine tuned in order to maximize the magnetic anisotropy barrier. In trigonal ligand fields high-spin Fe(II) complexes adopt an orbitally degenerate (5)E ground state with strong in-state spin-orbit coupling (SOC). We study the competing effects of SOC and the (5)E?ε multimode Jahn-Teller effect as a function of the peripheral substituents on the tpa ligand. These subtle distortions were found to have a significant effect on the magnetic anisotropy. Using a rigorous treatment of all spin multiplets arising from the triplet and quintet states in the d(6) configuration the parameters of the effective spin-Hamiltonian (SH) approach were predicted from first principles. Being based on a nonperturbative approach we investigate under which conditions the SH approach is valid and what terms need to be retained. It is demonstrated that already tiny geometric distortions observed in the crystal structures of four structurally and magnetically well-documented systems, reported recently, i.e., [Fe(tpa(R))](-) (R = tert-butyl, Tbu (1), mesityl, Mes (2), phenyl, Ph (3), and 2,6-difluorophenyl, Dfp (4), are enough to lead to five lowest and thermally accessible spin sublevels described sufficiently well by S = 2 SH provided that it is extended with one fourth order anisotropy term. Using this most elementary parametrization that is consistent with the actual physics, the reported magnetization data for the target systems were reinterpreted and found to be in good agreement with the ab initio results. The multiplet energies from the ab initio calculations have been fitted with remarkable consistency using a ligand field (angular overlap) model (ab initio ligand field, AILFT). This allows for determination of bonding parameters and quantitatively demonstrates the correlation between increasingly negative D values and changes in the σ-bond strength induced by the peripheral ligands. In fact, the sigma-bonding capacity (and hence the Lewis basicity) of the ligand decreases along the series 1 > 2 > 3 > 4.  相似文献   

12.
The single-molecule magnet behavior found in mononuclear tetracoordinate Fe(II) complexes with trigonal monopyramidal coordination due to large magnetic anisotropy has been analyzed using theoretical methods based on CASSCF-RASSI calculations. We focus our study on the dependence of such magnetic properties on the geometrical parameters of the complexes (asymmetry of the ligands and the out-of-plane shift of the Fe(II) cation with respect to the three equatorial nitrogen atoms) and the influence of the basicity of the N ligands. Low basicity, larger shifts, and larger distortions of the FeN(4) central framework decrease the D value and increase the E value. Also, we predict similar magnetic properties for similar pentacoordinate complexes adding an axial ligand that will increase the chemical stability of such systems.  相似文献   

13.
Quantum chemistry calculations of CASSCF/CASPT2 level together with ligand field analysis are used for the investigation of magnetic anisotropy of [Mo(CN)7]4- complexes. We have considered three types of heptacyano environments: two ideal geometries, a pentagonal bipyramid and a capped trigonal prism, and the heptacyanomolybdate fragment of the cyano-bridged magnetic network K2[Mn(H2O)2]3[Mo(CN)7]2.6H2O. At all geometries the first excited Kramers doublet is found remarkably close to the ground one due to a small orbital energy gap in the ligand field spectrum, which ranges between a maximal value in the capped trigonal prism (800 cm(-1)) and zero in the pentagonal bipyramid. The small value of this gap explains (i) the axial form of the g tensor and (ii) the strong magnetic anisotropy even in strongly distorted complexes. Comparison with available experimental data for the g tensor of the mononuclear precursors reveals good agreement with the present calculations for the capped trigonal prismatic complex and a significant discrepancy for the pentagonal bipyramidal one. The calculations for the heptacyanomolybdate fragment of K2[Mn(H2O)2]3[Mo(CN)7]2.6H2O give g(perpendicular)/g(parallel) approximately 0.5 and the orientation of the local anisotropy axis close to the symmetry axis of an idealized pentagonal bipyramid. These findings are expected to be important for the understanding of the magnetism of anisotropic Mo(III)-Mn(II) cyano-bridged networks based on the [Mo(CN)7]4- building block.  相似文献   

14.
A density functional theory (DFT) study of the magnetic coupling interactions and magnetic anisotropy in a family of experimentally synthesized Ni(9)Mo(V) and Ni(9)W(V) systems is presented. Our calculations show that for all of our selected Ni(9)M(6) systems, the intramolecular magnetic coupling interactions are ferromagnetic, and the ground-state spins are 12. All of the D values of Ni(9)W(6) systems come mainly from the contribution of the D(i) of W(6)(CN)(48)Ni extracted from Ni(9)W(6), and the influence of the eight surrounding Ni including the ligands on their magnetic anisotropy is very small. Although the surrounding Ni bounded by different ligands have a small influence on all D values for our selected complexes, they decide on the core structures of W(6)(CN)(48)Ni, which dominate their magnetic anisotropy. Thus, to obtain a Ni(9)W(6) system having a large negative D, we can use different ligands bound to Ni to obtain a good core structure of W(6)(CN)(48)Ni with a large negative D value. All D values of Ni(9)Mo(6) systems also come mainly from the contribution of D(i) of the Mo(6)(CN)(48)Ni, which is positive or negative but very small; most of these systems do not behave as single-molecule magnets.  相似文献   

15.
A systematic Density Functional Theory (DFT) and multiconfigurational ab initio computational analysis of the Spin Hamiltonian (SH) parameters of tetracoordinate S = 3/2 Co((II))S(4)-containing complexes has been performed. The complexes under study bear either arylthiolato, ArS(-), or dithioimidodiphosphinato, [R(2)P(S)NP(S)R'(2)](-) ligands. These complexes were chosen because accurate structural and spectroscopic data are available, including extensive Electron Paramagnetic Resonance (EPR)/Electron Nuclear Double Resonance (ENDOR) studies. For comparison purposes, the [Co(PPh(3))(2)Cl(2)] complex, which was thoroughly studied in the past by High-Field and Frequency EPR and Variable Temperature, Variable Field Magnetic Circular Dichroism (MCD) spectroscopies, was included in the studied set. The magnitude of the computed axial zero-field splitting parameter D (ZFS), of the Co((II))S(4) systems, was found to be within ~10% of the experimental values, provided that the property calculation is taken beyond the accuracy obtained with a second-order treatment of the spin-orbit coupling interaction. This is achieved by quasi degenerate perturbation theory (QDPT), in conjunction with complete active space configuration interaction (CAS-CI). The accuracy was increased upon recovering dynamic correlation with multiconfigurational ab initio methods. Specifically, spectroscopy oriented configuration interaction (SORCI), and difference dedicated configuration interaction (DDCI) were employed for the calculation of the D-tensor. The sign and magnitude of parameter D was analyzed in the framework of Ligand Field Theory, to reveal the differences in the electronic structures of the investigated Co((II))S(4) systems. For the axial complexes, accurate effective g'-tensors were obtained in the QDPT studies. These provide a diagnostic tool for the adopted ground state configuration (±3/2 or ±1/2) and are hence indicative of the sign of D. On the other hand, for the rhombic complexes, the determination of the sign of D required the SH parameters to be derived along suitably constructed symmetry interconversion pathways. This procedure, which introduces a dynamic perspective into the theoretical investigation, helped to shed some light on unresolved issues of the corresponding experimental studies. The metal hyperfine and ligand super-hyperfine A-tensors of the C(2) [Co{(SPPh(2))(SP(i)Pr(2))N}(2)] complex were estimated by DFT calculations. The theoretical data were shown to be in good agreement with the available experimental data. Decomposition of the metal A-tensor into individual contributions revealed that, despite the large ZFS, the observed significant anisotropy should be largely attributed to spin-dipolar contributions. The analysis of both, metal and ligand A-tensors, is consistent with a highly covalent character of the Co-S bonds.  相似文献   

16.
We present the results of our all-electron density-functional calculations on the magnetic anisotropy of the [Fe4(sap)4(MeOH)4] and [Fe4(sae)4(MeOH)4] polynuclear complexes. Our calculations, which predict that only the second complex is a single-molecule magnet (with a magnetic anisotropy energy barrier of 5.6 K), are in qualitative agreement with the experimental data. The analysis of the projected anisotropies of each Fe(II) ion, together with a study of the variation of the D value as a function of several geometrical parameters, allows us to qualitatively understand the different magnetic behaviors of both complexes. In addition to this, we also present a simple rule based on the analysis of the molecular orbitals of the system that allows us to predict how to enhance (by a factor of 6, approximately) the magnetic anisotropy barrier of these systems. Specifically, we will show that, for high-spin Fe(II) ions, the local easy axis of magnetization is perpendicular to the plane defined by the Fe(II)-d orbital which is doubly occupied. If similar rules were found for other metal ions, rational synthetic strategies to control magnetic anisotropy could be established.  相似文献   

17.
High-field, single-crystal EPR spectroscopy on a tetragonal bisdiselenazolyl ferromagnet has provided evidence for the presence of easy-axis magnetic anisotropy, with the crystallographic c axis as the easy axis and the ab plane as the hard plane. The observation of a zero-field gap in the resonance frequency is interpreted in terms of an anisotropy field several orders of magnitude larger than that observed in light-heteroatom, nonmetallic ferromagnets and comparable (on a per-site basis) to that observed in hexagonal close packed cobalt. The results indicate that large spin-orbit-induced magnetic anisotropies, typically associated with 3d-orbital-based ferromagnets, can also be found in heavy p-block radicals, suggesting that there may be major opportunities for the development of heavy p-block organic magnetic materials.  相似文献   

18.
The mixing of the spin-frustrated 2(S = 1/2) and S = 3/2 states by the Dzialoshinsky-Moriya (DM) exchange is considered for the Cu 3(II) clusters with strong DM exchange coupling. In the antiferromagnetic Cu 3 clusters with strong DM interaction, the 2(S = 1/2)-S = 3/2 mixing by the in-plane DM exchange ( G x ) results in the large positive contribution 2 D DM > 0 to the axial zero-field splitting (ZFS) 2 D of the S = 3/2 state. The correlations between the ZFS 2 D DM of the excited S = 3/2 state, sign of G z and chirality of the ground-state were obtained. In the isosceles Cu 3 clusters, the in-plane DM exchange mixing results in the rhombic magnetic anisotropy of the S = 3/2 state. Large distortions result in an inequality of the pair DM parameters, that leads to an additional magnetic anisotropy of the S = 3/2 state. In the {Cu 3} nanomagnet, the in-plane DM exchange (Gx, Gy) mixing results in the 58% contribution 2 D DM to the observed ZFS 2 D of the S = 3/2 state. The DM exchange and distortions explain the experimental observation that the intensities of the electron paramagnetic resonance (EPR) transitions arising from the 2(S = 1/2) group of levels of the {Cu 3} nanomagnet are comparable to each other and are 1 order of magnitude weaker than that of the S = 3/2 state. In the ferromagnetic Cu 3 clusters, the in-plane DM exchange mixing of the excited 2(S = 1/2) and the ground S = 3/2 states results in the large negative DM exchange contribution 2 D DM' < 0 to the axial ZFS 2 D of the ground S = 3/2 state.  相似文献   

19.
Tb (III)-Cu (II)-based single-molecule magnet (SMM) and non-SMM were synthesized to investigate the relationship between magnetic anisotropy and the symmetry of the ligand field by the reaction of [TbCu( o-vanilate) 2(NO 3) 3] with methoxypropylamine (MeOC 3H 6NH 2, 1) or ethoxyethylamine (EtOC 2H 4NH 2, 2). In both complexes, Tb (III) ions have a bicapped square-antiprism coordination geometry. When the Tb (III) ion is in a less symmetrical ligand field, it has an easy-axis anisotropy and shows SMM behavior, whereas when it is in a more symmetrical environment, it has an easy-plane anisotropy and exhibits non-SMM behavior.  相似文献   

20.
Gd(III) (S = 7/2) polyaminocarboxylates, used as contrast agents for Magnetic Resonance Imaging (MRI), were studied in frozen solutions by High-Frequency-High-Field Electron Paramagnetic Resonance (HF-EPR). EPR spectra recorded at 240 GHz and temperatures below 150 K allowed the direct and straightforward determination of parameters governing the strength of zero-field splitting (ZFS). For the first time, a correlation has been established between the sign of the axial ZFS parameter, D, and the nature of the chelating ligand in Gd(III) complexes: positive and negative signs have been observed for acyclic and macrocyclic complexes, respectively. Furthermore, it has been shown that complexes of the less symmetric acyclic DTPA derivatives possess a substantial rhombicity, E, in contrast to the more symmetric macrocyclic DOTA derivatives, where E is negligible. The results obtained are compatible with recent results of liquid-state EPR and allowed to simulate 1H Nuclear Magnetic Relaxation Dispersion (NMRD) profiles with more directly physically meaningful EPR and NMR parameters over the full frequency range from 0.01 to 50 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号