首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The driving forces for the phase transitions of ABX3 hybrid organic–inorganic perovskites have been limited to the octahedral tilting, order–disorder, and displacement. Now, a complex structural phase transition has been explored in a HOIP, [CH3NH3][Mn(N3)3], based on structural characterizations and ab initio lattice dynamics calculations. This unusual first‐order phase transition between two ordered phases at about 265 K is primarily driven by changes in the collective atomic vibrations of the whole lattice, along with concurrent molecular displacements and an unusual octahedral tilting. A significant entropy difference (4.35 J K?1 mol?1) is observed between the low‐ and high‐temperature structures induced by such atomic vibrations, which plays a main role in driving the transition. This finding offers an alternative pathway for designing new ferroic phase transitions and related physical properties in HOIPs and other hybrid crystals.  相似文献   

2.
(E,E)-1-[2-(4-Nitrophenyl)ethenyl]-4-[2-(2,4-dimethoxyphenyl)ethenyl]benzene was characterised by X-ray diffraction and shown to be dynamically disordered at room temperature. The structure was re-determined over a range of temperatures to infer the thermodynamic parameters related to this disorder. A phase transition of third order according to the Ehrenfest classification scheme was discovered. To the best of our knowledge, this is the first experimentally observed phase transition of formal third order. It can be explained by the involvement of long-range lattice vibrations.  相似文献   

3.
The structural grounds of the decrease of point and lattice symmetries coupled with switching of the exchange interaction in single crystals of a highly strained, coordinationally unsaturated bisdiaminecopper(II) cation are described. The combined magnetic susceptibility and X-ray diffraction results indicate that the interplay between the inherent vibronic instability and ligand-field strain imposed by moderately flexible, coordinationally shielding ligands enables effective switching of the pseudo-Jahn-Teller d9 centers between states with different exchange interaction in the low-temperature regime and valence orbital orientation and coordination geometry in the high-temperature regime. Within the low-temperature hysteresis region, the phase transition can also be induced by excitation of the ligand-to-metal charge-transfer bands, resulting in overall shrinkage of the lattice. The compound is a prototype of weakly electronically coupled one-dimensional Jahn-Teller systems, which can undergo phase transitions induced by light, in addition to heating, cooling, and change of pressure, and it represents a prospective basis for the design of switching materials capable of multimode external control.  相似文献   

4.
The crystal structure and lattice dynamics of orthorhombic acetylene have been calculated with an intermolecular potential consisting of atom-atom and multipole-multipole interactions and including a hydrogen bond. A new assignment of the Raman lattice vibrations is discussed and utilized in the refinement of the potential parameters. The non-transferability of the potential to the cubic phase is attributed to the breaking of the hydrogen bond at the phase transition, and to the large anharmonicity expected for the high-temperature phase.  相似文献   

5.
It has been revealed by mean-field theories and computer simulations that the nature of the collapse transition of a polymer is influenced by its bending stiffness epsilon(b). In two dimensions, a recent analytical work demonstrated that the collapse transition of a partially directed lattice polymer is always first order as long as epsilon(b) is positive [H. Zhou et al., Phys. Rev. Lett. 97, 158302 (2006)]. Here we employ Monte Carlo simulation to investigate systematically the effect of bending stiffness on the static properties of a two-dimensional lattice polymer. The system's phase diagram at zero force is obtained. Depending on epsilon(b) and the temperature T, the polymer can be in one of the three phases: crystal, disordered globule, or swollen coil. The crystal-globule transition is discontinuous and the globule-coil transition is continuous. At moderate or high values of epsilon(b) the intermediate globular phase disappears and the polymer has only a discontinuous crystal-coil transition. When an external force is applied, the force-induced collapse transition will either be continuous or discontinuous, depending on whether the polymer is originally in the globular or the crystal phase at zero force. The simulation results also demonstrate an interesting scaling behavior of the polymer at the force-induced globule-coil transition.  相似文献   

6.
A strong concentration dependence of the solvent–polymer interaction parameter χ is known to be a requirement for the first‐order volume phase transition in uncharged polymer networks in solvents. Another possibility for the observation of phase transition in nonpolar networks is to increase the number of lattice sizes occupied by a solvent molecule. This possibility has been indicated earlier and is worked out in detail in this paper. Using the theory of swelling equilibrium, we examine the polymer network systems immersed in a polymer melt. The critical conditions for the phase transition in both uncharged and ionic networks are described.  相似文献   

7.
This article focuses on the problem of remarkably strong changes in the fine structure patterns of the ν(N-H) and ν(N-D) bands attributed to the hydrogen and deuterium bonds accompanying the phase transition, which occurs between two polymorphic forms of oxindole. The lattices of these two different crystals contain hydrogen-bonded cyclic dimers differ in their geometry parameters. The source of these differences in the polymorph spectral properties results from the geometry relations concerning the dimers constituting the lattice structural units. In the case of the "alpha" phase, the hydrogen bond lengths of the dimers differ by 0.18 ?. This leads to the "off-resonance exciton coupling" weakly involving the dimer hydrogen bonds. For the "beta" phase, with practically symmetric dimers in the lattice, the spectra become typical for centrosymmetric hydrogen bond systems due to the full resonance of the proton or deuteron vibrations.  相似文献   

8.
This work provides an overview of data on the topology of concentration-gradient transition zones forming in polymer adhesive compounds with different thermodynamic compatibilities of components and phase states of the system. It is shown that the structural organization of a transition zone involving an existence and extension of areas of diffusional mixing, nature, and dimensions of phase aggregates depends heavily on the thermal prehistory and formation conditions and usages of compounds and can be determined by the phase equilibrium diagrams for an adhesive–substrate system.  相似文献   

9.
In an effort to elucidate the structure of the low-temperature phase of PTFE, a spectroscopic study of the effect of progressive irradiation on the low-frequency infrared spectrum was undertaken. Previous infrared and Raman measurements indicated that irradiation of PTFE decreases its crystalline content, resulting in a lowering of the 19°C phase transition temperature due to the introduction of disorder and defect structures into the lattice by chain scission. Far-infrared studies of virgin and irradiated PTFE at liquid nitrogen temperatures show that the medium to strong bands at 45, 54, 58, and 71 cm?1, attributed to lattice vibrations, decrease in intensity as the crystalline content decreases. These findings support the assignment of these bands to intermolecular vibrations of the crystalline lattice and are an indication of the presence of more than one molecule in the crystallographic unit cell.  相似文献   

10.
The structural‐dynamic changes and polymer‐solvent interactions during temperature‐induced phase transition in poly(vinyl methyl ether) (PVME)/D2O solutions in a broad range of concentrations (0.1‐30 wt.‐%) were studied by 1H NMR methods. In the whole concentration range the phase transition is manifested by line broadening (linewidth 350‐500 Hz) of a major part of PVME units, evidently due to the formation of globular‐like structures. Above the LCST transition, the fraction of phase‐separated PVME segments is equal to 0.8±0.1, independent of polymer concentration. While at low concentrations the transition is virtually discontinuous, at high concentrations the transition region is ∼ 3 K broad. Measurements of nonselective and selective 1H spin‐lattice relaxation times T1 of solvent (HDO) molecules evidenced that at elevated temperatures, where most PVME forms globular structures, a part of solvent molecules is bound to PVME forming a complex; the lifetime of the bound water (HDO) molecules is ≤2 s.  相似文献   

11.
Neutral–ionic (NI) phase transition is a reversible switching of organic charge-transfer complexes between distinct valence states by external stimuli. This phase transformation in the low-dimensional system is demonstrated to provide a variety of novel dielectric, structural, and electronic properties. Importantly, ionization of the electron donor–acceptor pairs is usually accompanied by a ferroelectric or antiferroelectric order of the molecular lattice, leading to huge dielectric response near the transition point. Although these characteristics are potentially useful for future electronic and optical applications, the thermally accessible NI transition (TINIT) is still an extremely rare case. The TINIT compounds including some new materials are overviewed in order to provide convenient guides to their design and experimental identifications. The phase transition and dielectric properties can be closely controlled in various ways depending on chemical and physical modifications of the crystals. Among them, a quantum phase transition and relaxor ferroelectricity, both of which are currently attracting subjects from both scientific and practical perspectives, are highlighted as the first achievements in organic charge-transfer complexes.  相似文献   

12.
Variable-temperature single-crystal neutron diffraction structures of the alums CsM(III)(SO(4))(2).12D(2)O, where M(III) = Ti, V, Mn, and Ga, are reported. Structural differences are highlighted by the titanium and manganese alums, which undergo cubic (Pathremacr;) to orthorhombic (Pbca) phase transitions at approximately 13 and approximately 156 K, respectively. The structural instability exhibited by these salts is interpreted as arising from cooperative Jahn-Teller interactions, and these measurements characterize the structural changes that result from the coupling between the electronic and vibrational states. Although the symmetry changes associated with the phase transformations are analogous for the Ti and Mn alums, the low-temperature geometries of the tervalent hexaaqua cations are markedly different. Whereas the MnO(6) framework is subject to a pronounced tetragonal elongation, changes in the Ti-O bond lengths are very modest; but significant changes in the O-Ti-O bond angles and in the disposition of the coordinated water molecules are identified. The large differences in the transition temperatures and in the low-temperature stereochemistries of the [Ti(OD(2))(6)](3+) and [Mn(OD(2))(6)](3+) cations are related to the sensitivity of the energies of the t(2g) (O(h)) and e(g) (O(h)) orbitals to the various asymmetric vibrations of the hexaaqua complex.  相似文献   

13.
The terahertz region is between the optical wave and the so-called microwaves; it had not been studied until 1963, when Nishizawa started the development of a THz wave generation based on the character of lattice or molecular vibrations. In 1979, Raman laser oscillation was realized using GaP, and in 1983, the oscillation of lattice vibration (12 THz) was achieved by mixing with the original wave. Recently, many kinds of oscillators have been developed: LiNbO3 and others for parametric oscillations, TUNNETT diode, so-called Ballistic SIT, etc. These frequencies can induce lattice or molecular vibrations, observable through reflection or transmission. Therefore, terahertz technology is useful for detection of toxins, including bacteria and viruses. It can be applied for investigation of structural changes in molecules, including those caused by disease or medical treatment. At the same time, it can heat up selectively a specified structure of a polymer and, hence, may be used for thermal treatment, or to enhance the reaction with a specific structure, suppressing side effects.  相似文献   

14.
The spin crossover phenomenon of the recently described spin crossover complex [FeII(DAPP)(abpt)](ClO4)2 [DAPP = bis(3-aminopropyl)(2-pyridylmethyl)amine, abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole] accompanying an order-disorder phase transition of the ligand was investigated by adiabatic heat capacity calorimetry, far-IR, IR, and Raman spectroscopies, and normal vibrational mode calculation. A large heat capacity peak due to the spin crossover transition was observed at T(trs) = 185.61 K. The transition enthalpy and entropy amounted to Delta(trs)H = 15.44 kJ mol-1 and Delta(trs)S = 83.74 J K-1 mol-1, respectively. The transition entropy is larger than the expected value 60.66 J K-1 mol-1, which is contributed from the spin multiplicity (R ln 5; R: the gas constant), disordering of the carbon atom of the six-membered metallocycle in the DAPP ligand, and one of the two perchlorate anions (2R ln 2), and change of the normal vibrational modes between the high-spin (HS) and low-spin (LS) states (35.75 J K-1 mol-1). The remaining entropy would be ascribed to changes of the lattice vibrations and molecular librations between the HS and LS states. Furthermore, [Fe(DAPP)(abpt)](ClO4)2 crystals disintegrated and became smaller crystallites whenever they experienced the phase transition. This may be regarded as a successive self-grinding effect, evidenced by adiabatic calorimetry, DSC, magnetic susceptibility, and microscope observation. The relationship between the crystal size and the physical quantities is discussed.  相似文献   

15.
Although a lattice Monte Carlo method provides an effective, simple, and fast way to study thermodynamic properties of substitutional alloys, it cannot treat by itself the off-lattice effects, such as thermal vibrations and local distortions. Therefore, even if the interaction among atoms at lattice points is calculated accurately by means of first-principles calculations, the lattice Monte Carlo simulation overestimates the order-disorder phase transition temperature. In this paper, we treat this problem in the investigation of the FePt alloy, which has recently attracted considerable interest in its magnetic properties. We apply a simple version of the potential renormalization theory to determine the interaction among atoms, including partly the off-lattice effects by means of first-principles calculations. Then, we use the interaction to perform a lattice Monte Carlo simulation of the FePt alloy on a fcc lattice. From the results, we find that the transition temperature obtained after the present renormalization procedure becomes closer to the experimental value.  相似文献   

16.
The thermotropic phase behaviour and structural organisation of ceramide N-linoeoyl-phytosphingosine (ceramide 3A) is investigated by means of differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Its polymorphism and structural properties are compared with two ceramides of the type III class with various hydrocarbon chain saturation degrees. After hydration the main phase transition temperature of ceramide 3A is found at 76 degrees C with a phase transition enthalpy of +29 kJ mol(-1). Analysing the frequency of methylene stretching vibrations (by infrared spectroscopy) reveals that the fluidity (amount of trans-gauche isomers) is strongly increased for ceramide 3A compared to its stearoyl ceramide type III analogue. After lipid hydration, the acyl chains of all investigated phytosphingosine ceramides of type III adopt a hexagonal-like chain packing. The amide I and amide II vibrations are quite sensitive to the phase transition of the ceramide. The corresponding band analysis reveals strong inter- and intramolecular hydrogen bonds between the amide and hydroxyl groups in the ceramide head groups. The H-bonding network and conformation of the head group of ceramide 3A is only slightly influenced by hydration. The water penetration capacity of ceramide 3A is, however, considerably larger compared to other phytosphingosine derivatives. The structural and organisational properties of ceramides of type III class are discussed with respect to their physiological relevancies for the stratum corneum lipid barrier property of the skin.  相似文献   

17.
The structure of a microemulsion mixed with polymer networks was investigated by means of small-angle neutron scattering (SANS). The system consists of nonionic surfactant, polymer network, oil, and water. The microemulsion and the polymer network employed in this work are known to undergo temperature-induced structural transition and volume phase transition, respectively. Polymer solutions and gels were made by polymerizing monomer solutions in the presence of microemulsion droplets. In the case of a mixture of an N-isopropylacrylamide (NIPA) monomer solution and a microemulsion, the NIPA monomer was found to behave as a cosurfactant. However, polymerization resulted in a phase separation to polymer-rich and -poor phases. Interestingly, SANS results indicated that a well-developed ordered structure of oil domains was formed in polymer network and the structure was very different from its parent systems. Furthermore, the system underwent two different types of structural transitions with respect to temperature. One was originated from the structural transition of microemulsion due to the change of the spontaneous curvature and the other from the volume phase transition of the NIPA gel.  相似文献   

18.
The development of a bench‐top‐type system for simultaneous measurement of X‐ray diffraction and Raman spectra has been made to investigate structural changes in the phase transitions of chain molecules such as polyethylene, n‐alkane, and so forth from various viewpoints. For the X‐ray diffraction measurement an imaging plate or a charge‐coupled device camera was used as a two‐dimensional detector. For the Raman spectral measurement a miniature Raman spectrometer was used with optical fibers for the irradiation of incident laser beams and collection of scattered signals. For example, in the heating process of the n‐C30H62 sample, the phase transition from orthorhombic‐to‐hexagonal lattices could be detected clearly by the X‐ray and Raman measurements. By comparing these two different types of data in detail, an intimate relationship between conformational disordering and rotational motion of molecular chains is detected more clearly than before. Also, similar discussion can be made for the orthorhombic‐to‐hexagonal phase transition of the geometrically constrained polyethylene sample occurring immediately below the melting point. Another example concerns the structural change in the photoinduced solid‐state polymerization of cis,cis‐diethylmuconate single crystal. From the shifts in the X‐ray reflection position and Raman frequency characteristic of the produced polymer, it was found that the molecular deformation of the polymer chains and lattice strain was induced in the early stage of the polymerization reaction. For the ferroelectric‐phase transition of vinylidene fluoride copolymer, the simultaneous measurement was made for collecting triple information of small‐angle and wide‐angle X‐ray scatterings and Raman spectra to know the relationship between the structural change in the crystal lattice and the morphological change in the lamellar stacking mode. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 495–506, 2002; DOI 10.1002/polb.10112  相似文献   

19.
Crystals of tris(hydroxymethyl)nitromethane (1) and tris(hydroxymethyl)aminomethane (2) were prepared and grown at room temperature. X-ray analysis was used to study the structure of crystals 1 and 2 at room temperature; the X-ray diffraction method was applied to investigate polycrystalline samples during a temperature rise up to the phase transition into the plastic phase. Phase transitions in separate crystals 1 and 2 were observed in a hot stage under an optical microscope. Calorimetric study of the crystal temperature behavior and the phase transition features including melting were carried out. By IR spectroscopy the temperature relations of the bonds of symmetric N-O stretching vibrations of nitro groups and stretching vibrations of OH groups redistribution in crystals of 1 were investigated. In crystals of 2 the behavior of stretching vibration bands of O-H groups was studied at room temperature. In the temperature interval including phase transition, data on structure-dynamic rearrangements in the crystal lattice of compounds 1 and 2 were obtained by the NMR pulse method in the solid phase using relaxational free induction decay of protons. The proton conductivity was found and its temperature parameters were determined for both compounds in the plastic state.  相似文献   

20.
We are proposing a lattice model with chemical input for the computer modelling of the polymer glass transition. The chemical input information is obtained by a coarse graining procedure applied to a microscopic model with full chemical detail. We use this information on Bisphenol-A-Polycarbonate to predict it's Vogel-Fulcher temperature out of a dynamic Monte Carlo Simulation. The microscopic structure of the lattice model is that of a genuine amorphous material, and the structural relaxation obeys the time temperature superposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号