首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article is concerned with describing novel structural features of the water vapor coagulated Poly-p-phenylenebenzobisoxazole fiber in comparison with other PBO fibers made with hot liquid water and non-aqueous coagulation. Micro-focus X-ray diffraction was adopted to see the skin-core difference of molecular orientation and crystal size along the fiber-radius direction. Low temperature differential scanning calorimetry (DSC) was performed to elucidate the structural features of never-dried fibers made with the different coagulation techniques. Comparison of micro-focus X-ray diffraction profiles from the different positions on the fiber suggests less anisotropy of preferential orientation for the water vapor coagulated fiber. The fiber made through water vapor coagulation showed a large skin-core difference in molecular orientation with structural inhomogeneity along the fiber axis.  相似文献   

2.
The preferential orientation of the a-axes of poly-p-phenylenebenzobisoxazole (PBO) crystals in PBO fibers made with differential coagulation processes is characterized. Electron diffraction and micro-focus X-ray diffraction were carried out for this purpose. To estimate the alignment quantitatively a two-phase model is proposed and the calculated X-ray diffraction profiles fit well with the measured profiles. Water vapor coagulation at high temperature gave mostly almost random preferential orientation while a non-aqueous coagulation produced radial orientation. The fibers made with hot liquid water coagulation were characterized as a middle form between the limits of radial and random orientations.  相似文献   

3.
The jet swell effect in the wet spinning of polyacrylonitrile (PAN) fiber was studied by optical microscopy and the jet swell ratio was obtained through directly measuring the diameter of the freely extruded fibers. For reflecting the actual drawing situation of the fibers in the coagulation process, the jet stretches were then corrected from the apparent values to the true values, and their effect on the cross-sectional morphology, internal structure, and orientation of the wet-spun PAN fibers was studied by optical microscopy, scanning electron microscopy, and X-ray diffraction, respectively. The results showed that jet stretch plays an important role in eliminating the adverse effects caused by the jet swell effect and affects the fiber structure; PAN fibers of uniform denier, dense and homogenous structure, and high orientation can only be obtained at a suitable jet stretch.  相似文献   

4.
多晶铁纤维吸收剂微波电磁参数的各向异性研究   总被引:13,自引:0,他引:13       下载免费PDF全文
何华辉  吴明忠  赵振声 《物理学报》1999,48(13):138-143
由麦克斯韦方程出发,导出了多晶铁纤维吸收剂微波电磁参数的理论计算公式,通过数值分析,阐述了多晶铁纤维吸收剂微波电磁参数的各向异性.通过纤维取向样品的制备和测试,实验验证了电磁参数的各向异性.理论和实验研究均表明,多晶铁纤维吸收剂的微波电磁参数具有明显的形状各向异性,其轴向磁导率大于径向磁导率,轴向介电常数大于径向介电常数. 关键词:  相似文献   

5.
岳晴  王远军 《波谱学杂志》2020,37(4):422-433
基于扩散磁共振成像的纤维追踪技术为非侵入性观测脑白质结构提供了有力的手段,约束球面反卷积作为一种多纤维追踪模型,能够对体素内纤维的方向信息进行建模,进而实现脑纤维的重构.针对约束球面反卷积模型的不适定性以及细节信息丢失问题,本文在约束球面反卷积的基础上,结合邻域信息和分数阶正则化,提出了一种基于非局部约束球面反卷积模型的确定型纤维追踪算法,分数阶的非局部特性使得纤维方向分布模型估计的误差更小,而邻域信息的引入保证了空间一致性,可以减少噪声的影响.分别利用模拟数据、人脑实际数据对本文算法及基于约束球面反卷积的确定型纤维追踪算法作对比实验,结果表明,利用本文算法追踪的纤维不仅整体视觉效果上较整洁,而且对交叉纤维的重建结果更完整准确.  相似文献   

6.
张彩红  盛毅  田红  徐耀  吕春祥  吴忠华 《物理学报》2011,60(3):36101-036101
通过全谱拟合法对碳纤维制备过程中不同阶段纤维的XRD谱图进行处理,得到不同阶段纤维的微观结构参数,研究了聚丙烯腈(PAN)基碳纤维制备过程中晶态结构的演变.全谱拟合法基于晶体衍射的严格物理理论,拟合目标为整个衍射谱,并不是个别衍射峰,所得结果具有更高的可信度.研究结果表明:PAN原丝中的高分子链沿纤维轴高度取向,表观晶粒尺寸为6.5 nm左右;经过预氧化处理,纤维中的有序结构遭到破坏,表观晶粒尺寸锐减.纤维中逐渐形成梯形结构并沿纤维轴取向,从而形成新的有序结构;经过碳化处理后,环状梯形结构转变为碳的层状结 关键词: 碳纤维 晶体结构 XRD 全谱拟合法  相似文献   

7.
使用自制拉伸装置和显微拉曼系统测定了形变下多晶氧化铝纤维的荧光R1和R2谱线,发现两条谱线均随纤维拉伸应变的增大而变宽,并获得了纤维应变与谱线宽化值之间的定量关系。从纤维的结晶晶格结构和形态学微结构定性地解释了谱线的宽化行为。也测定了谱线频率与多晶氧化铝纤维温度间的定量关系,频率温度系数值近似等同于单晶氧化铝的值。最后,研究了激发光偏振方向相对于纤维轴向的不同夹角对谱线频率的影响,并由此得出,氧化铝晶粒有相对纤维轴向取向的倾向。  相似文献   

8.
The possibility to make a composite poly-p-phenylenebenzobisoxazole (PBO) fiber including a second component without distorting its original structures and mechanical properties was examined. Copper phthalocyanine was found to fulfill the above-mentioned condition and can be dispersed in the fiber molecularly. It was shown that part of the embedded copper phthalocyanine can be aligned one-dimensionally with periodicity along the fiber axis in the fiber. The color of the resultant fiber was dark blue, which is different from the original fiber having its yellowish golden color. According to X-ray diffraction analysis the preferential orientation of the a-axis of the PBO crystal was slightly more oriented by the addition of copper pthalocyanine than that of the pure PBO fiber, but the crystal size of PBO wasn't also affected. We thus show the possibility of adding a second material that can add additional properties to the fiber, but keeping the original high mechanical properties and oriented structures.  相似文献   

9.
对钠硼铝硅酸盐玻璃熔体进行拉丝,再经过退火热处理,制备得到光纤直径80~130μm的PbSe量子点玻璃裸光纤.透射电镜分析发现光纤中PbSe量子点的晶粒尺寸为4.2~5.5nm,掺杂体积比约1%.对量子点光纤的柔性进行了初步测试.以980nm泵浦激光作为激励源,用荧光光谱仪观测了量子点光纤的荧光发射谱.结果表明:合适的量子点光纤的退火条件跟块玻璃不同.当退火温度为500~600℃、热处理时间为5~10h时,观测到量子点光纤有强烈的荧光辐射,峰值波长位于1 300~1 450nm,半高全宽达200~330nm.光纤最佳退火温度为600℃、时间7.5h.本文得到的量子点玻璃光纤可进一步制备成玻璃基底的量子点光纤型增益器件光纤放大器、光纤激光器等.  相似文献   

10.
Excellent poly(acrylonitrile-co-itaconic acid) (99/1) (PAI) nascent fibers, which have an important role in preparing high-quality precursors for carbon fibers, were prepared by a dry-jet wet spinning process. Their structures were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and an ultrasound solvent etching method, as well their properties being determined by a strength and extension meter and a fineness meter, both designed specifically for fibers. When a high drawing ratio, over 300%, was applied to the fibers in the dry-jet wet spinning coagulation bath, the molecular chains were easy to orient and regularly arrange, resulting in the relative crystallinity, crystal size and amorphous orientation degree of the nascent fibers being improved. The fibrils with large diameter were formed, increasing the bulk density with the overall porosity and pore numbers decreasing. Therefore, the nascent fibers had smaller diameters, higher strength, higher rupture elongation and smaller coefficients of variation. The optimum high performance PAI precursor fibers, with 0.59dtex in titer, 7.51cN/dtex in tensile strength, 7.9% in rupture elongation and the final carbon fiber with 5.54GPa in tensile strength, were obtained through a post-spinning treatment in which they were subjected to a high coagulation bath draw ratio and carbonization.  相似文献   

11.
Polymer Optical Fiber Photosensitivities and Highly Tunable Fiber Gratings   总被引:2,自引:0,他引:2  
In this paper, recent progress in the investigation of photosensitivities of polymer optical fibers and the development of polymer optical fiber grating is reported. Photosensitivities in various polymer fibers, including doped and undoped, multimode and single-mode polymer fibers, have been experimentally characterized and evaluated for fiber grating application. In particular, the wavelength dependence of material absorption and photosensitivity has been found essential to the fabrication of polymer optical fiber grating. Based on the results of photosensitivity research, polymer optical fiber gratings have been successfully fabricated. More importantly, polymer optical fiber grating has been demonstrated highly tunable, with a tuning range more than 70 nm. The unique feature of high tunability in polymer optical fiber grating has great potential in various applications including optical fiber WDM systems and fiber sensor systems. Several important issues that remain to be investigated will also be discussed.  相似文献   

12.
In this paper, recent progress in the investigation of photosensitivities of polymer optical fibers and the development of polymer optical fiber grating is reported. Photosensitivities in various polymer fibers, including doped and undoped, multimode and single-mode polymer fibers, have been experimentally characterized and evaluated for fiber grating application. In particular, the wavelength dependence of material absorption and photosensitivity has been found essential to the fabrication of polymer optical fiber grating. Based on the results of photosensitivity research, polymer optical fiber gratings have been successfully fabricated. More importantly, polymer optical fiber grating has been demonstrated highly tunable, with a tuning range more than 70 nm. The unique feature of high tunability in polymer optical fiber grating has great potential in various applications including optical fiber WDM systems and fiber sensor systems. Several important issues that remain to be investigated will also be discussed.  相似文献   

13.
《Composite Interfaces》2013,20(1):77-90
Phosphate glass fiber of the composition 20Na2O–24MgO–16CaO–40P2O5 was produced using an in-house fiber drawing rig. The interfacial properties of the phosphate glass fiber/poly(caprolactone) (PCL) system were measured using the single fiber fragmentation test (SFFT). The system was calibrated using E-glass fibers and polypropylene system. This gave an interfacial shear strength (IFSS) of 4.1 MPa, which agrees well with other published data. The IFSS for the unsized (as drawn) phosphate glass fiber/PCL system was found to be 1.75 MPa. Fibers treated with 3-aminopropyl-triethoxy silane (APS) showed an IFSS of 3.82 MPa. X-ray photoelectron spectroscopic (XPS) analysis of unsized and silane sized fibers established the presence of silane on the fiber surface. Degradation tests of the silane treated fiber/PCL samples were carried out in deionised water at 37°C and it was found that the IFSS values decreased over time. Four others silanes were also investigated but APS gave the highest IFSS values.  相似文献   

14.
《Composite Interfaces》2013,20(4-6):359-376
The pore characteristics and morphological changes of henequen fiber after electron beam (EB) irradiation were studied, and their effects on interfacial adhesion between henequen fiber and polypropylene (PP) matrix of biocomposites were investigated. The surface morphologies of the fibers exposed to various EB irradiation doses were observed with an atomic force microscope (AFM). The porosity and pore distribution of fibers were characterized by mercury porosimetry and nonfreezing bound water (NFW) was measured by differential scanning calorimeter (DSC). Henequen fiber-reinforced polypropylene biocomposites were manufactured by the compression molding method and interlaminar shear strength (ILSS) was analyzed to examine the interfacial adhesion between henequen fiber and the PP matrix of the biocomposites. The AFM images indicated that pectin, waxy materials and impurities were removed from the surfaces of the henequen fibers during EB irradiation, resulting in changes of the surface morphology and characteristics of the fibers. When pectin, waxy compounds and impurities were removed, small pores of 1–0.01 μm were produced, and total surface area and porosity were increased. The increase in total surface area and porosity induced better adhesion between fiber and polymer which was confirmed by ILSS tests. However, the excessive creation of small pore size gives a negative effect on the tensile strength of henequen fiber. The best interfacial adhesion between henequen fiber and PP was obtained for the biocomposite reinforced with the henequen fiber treated with 10 kGy, which has the highest surface area and optimum pore diameter for interlocking between henequen fiber and polypropylene.  相似文献   

15.
Strength characteristics of carbon fiber reinforced plastics (CFRPs) are investigated by nondestructive means as microstructural changes in a material’s bulk under external mechanical loads. CFRP microstructure is studied experimentally via pulsed ultrasonic microscopy at the level of mechanical deformation resulting in degradation of a material’s properties. The process of composite deformation is studied by means of stepped stretching. Acoustic emissions are used to identify the stage preceding final destruction (the accumulation of microcracks, fibers breaking, and delamination) as an indicator of a material’s degradation. Pulse acoustic microscopy is used to observe the accumulation of microcracks in individual layers of a material. To study the behavior of a CFRP microstructure upon mechanical loading, tensile stress was applied to samples with cross-ply packing of fibers (0°, 90°) and (45°, ?45°). It is shown that the brittle fracturing of reinforcing fibers is typical of CFRPs with fiber orientation (0°, 90°), and is accompanied by growing areas of stress concentration and a rise in of acoustic emission activity, with a subsequent increase in the signal energy and the formation of extensive interlaminar delamination. Acoustic emission shows a low level of activity for CFRP samples with fiber orientation (45°, ?45°), which is accompanied by the formation of structural microdefects that are clearly visible in acoustic images.  相似文献   

16.
The morphology and mechanical properties of four different fibers-polyethylene, polypropylene, nylon 66, and polyethylene terephthalate-under the influence of twisting, were investigated. It was found that a model for affine deformation of the fibers can be applied only for very low-twist levels. At high-twist levels the stress distribution and the deformation made in the fiber were very complex. A preferred radial orientation occurred in polyethylene, nylon 66, and polyethylene terephthalate giving rise to an ideal situation for chain tilting and kinking. Polymorphic transition, twinning, and yielding were also observed in the case of polyethylene. The fiber moduli decreased sharply with twist, and this was attributed to the effects of inhomogeneous stress distribution and fibril slippage.  相似文献   

17.
光子晶体光纤及在光纤光栅中的应用   总被引:1,自引:0,他引:1  
从光子晶体光纤(PCF)与普通光纤在光纤结构上的差异出发,简要分析PCF的导光原理与单模特性,并探讨基于PCF的光纤光栅的稳定性,基于聚合物填充多孔光纤的长周期光纤光栅的温度调谐性能,以及纯结构性非光敏纤芯长周期光子晶体光纤光栅的原理。从一个方面说明了光子晶体光纤的潜在应用。  相似文献   

18.
The fine structure of carbon fibers synthesized under various technological conditions is studied. It is found that the material of the fibers is heterogeneous and its component composition is determined by thermomechanical treatment conditions and the presence of a boron addition and depends on the angle of coherent-domain orientation φ with respect to the fiber axis. The detected dependences of the component composition of the fibers on the heat-treatment temperature and time and the angle of coherent-domain orientation with respect to the fiber axis suggest that the transition of the carbon material of the fibers into a more equilibrium state is likely to proceed through a number of metastable states.  相似文献   

19.
The effect of susceptibility differences between fluid and fibers on the properties of DTI fiber phantoms was investigated. Thereto, machine-made, easily producible and inexpensive DTI fiber phantoms were constructed by winding polyamide fibers of 15 microm diameter around a circular acrylic glass spindle. The achieved fractional anisotropy was 0.78+/-0.02. It is shown by phantom measurements and Monte Carlo simulations that the transversal relaxation time T(2) strongly depends on the angle between the fibers and the B(0) field if the susceptibilities of the fibers and fluid are not identical. In the phantoms, the measured T(2) time at 3 T decreased by 60% for fibers running perpendicular to B(0). Monte Carlo simulations confirmed this result and revealed that the exact relaxation time depends strongly on the exact packing of the fibers. In the phantoms, the measured diffusion was independent of fiber orientation. Monte Carlo simulations revealed that the measured diffusion strongly depends on the exact fiber packing and that field strength and -orientation dependencies of measured diffusion may be minimal for hexagonal packing while the diffusion can be underestimated by more than 50% for cubic packing at 3 T. To overcome these effects, the susceptibilities of fibers and fluid were matched using an aqueous sodium chloride solution (83 g NaCl per kilogram of water). This enables an orientation independent and reliable use of DTI phantoms for evaluation purposes.  相似文献   

20.
It is known that preferential paths for the propagation of an electrical excitation wave in the human ventricular myocardium are associated with muscle fibers in tissue. The speed of the excitation wave along a fiber is several times higher than that across the direction of the fiber. To estimate the effect of the architecture and anisotropy of the myocardium of the left ventricle on the process of its electrical activation, we have studied the relation between the speed of the electrical excitation wave in a one-dimensional isolated myocardial fiber consisting of sequentially coupled cardiomyocytes and in an identical fiber located in the wall of a threedimensional anatomical model of the left ventricle. It has been shown that the speed of a wavefront along the fiber in the three-dimensional myocardial tissue is much higher than that in the one-dimensional fiber. The acceleration of the signal is due to the rotation of directions of fibers in the wall and to the position of the excitation wavefront with respect to the direction of this fiber. The observed phenomenon is caused by the approach of the excitable tissue with rotational anisotropy in its properties to a pseudoisotropic tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号