首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physical properties of intumescent materials are important parameters as input data in modeling the combustion behavior of intumescent materials in a fire. In this paper, effects of important physical properties on heat transfer of intumescent materials during burning are simulated based on a combustion model of intumescent fire-retardant polypropylene (IFR-PP) materials. Physical properties selected are thermal conductivity of virgin material and char layer, specific heat capacity of virgin material, density of virgin material, surface emissivity of virgin material and char layer, and intumescent temperature. Predicted temperature curves at a location 9 mm from the bottom of the IFR-PP material at an incident heat flux of 50 kW/m2 are shown for the varied physical parameters values. The results show that these varied parameter values can affect the heat transfer of materials remarkably.  相似文献   

2.
Thermophysical properties of intumescent fire-retardant (IFR) materials are important input parameters to simulate the pyrolysis process of IFR materials in fire scenarios. In this article, the effects of the thermophysical properties on pyrolysis of IFR materials are simulated based on a pyrolysis model of IFR materials. The selected thermophysical properties here are the specific heat capacity of the virgin material, thermal conductivity of the virgin material and char layer, heat of decomposition, density of virgin material, intumescent temperature, and surface emissivity of virgin material and char layer. Simulated mass loss rates (MLR) for the IFR materials at an incident heat flux of 50 kW/m2 are investigated for the varied thermophysical parameter values. The results show that changes in these property values can affect the pyrolysis behavior of materials profoundly. Comparison with experimental results indicates that the simulations of MLR are in reasonably good agreement with the experiments.  相似文献   

3.
Organic vermiculite (OVMT) prepared from vermiculite (VMT), with high aspect ratio and orderly arranged platelets intercalated by octadecyl trimethyl ammonum bromide (OTAB), was used as a synergistic agent on the flame retardancy of a polypropylene/intumescent flame retardant (PP/IFR) system. The flammability and thermal stability of PP/IFR/OVMT composites were investigated by limiting oxygen index (LOI), UL-94 testing, cone calorimetry tests, and thermogravometric analysis. The results of LOI and UL-94 testing showed that low loading of OVMT improved the flame retardancy and retarded dripping for PP/IFR composites. OVMT, with 1% loading, increased the char residue of PP/IFR composites and could act as an effective additive for improvement in flame retardancy, which was confirmed by the cone data. The char layer morphological structures observed by scanning electron microscopy (SEM) showed that OVMT with 1% loading can promote formation of a continuous and compact intumescent char layer. Raman spectroscopy results indicated that the OVMT or its pyrolytic products led to a decrease in size of the carbonaceous micro-domain during combustion, resulting in formation of more compact charred layers. Thus, OVMT with 1% loading showed a synergistic effect with IFR in the combustion of the PP/IFR composites.  相似文献   

4.
The effect of gasification reactions on biomass char conversion under pulverized fuel combustion conditions was studied by single particle experiments and modelling. Experiments of pine and beech wood char conversion were carried out in a single particle combustor under conditions of 1473-1723 K, 0.0-10.5% O2, and 25-42% H2O. A comprehensive progressive char conversion model, including heterogeneous reactions (char oxidation and char gasification with CO2 and H2O), homogeneous reactions (CO oxidation, water-gas shift reaction, and H2 oxidation) in the particle boundary layer, particle shrinkage, and external and internal heat and mass transfer, was developed. The modelling results are in good agreement with both experimental char conversion time and particle size evolution in the presence of oxygen, while larger deviations are found for the gasification experiments. The modelling results show that the char oxidation is limited by mass transfer, while the char gasification is controlled by both mass transfer and gasification kinetics at the investigated conditions. A sensitivity analysis shows that the CO oxidation in the boundary layer and the gasification kinetics influence significantly the char conversion time, while the water-gas shift reaction and H2 oxidation have only a small effect. Analysis of the sensitive parameters on the char conversion process under a typical pulverized biomass combustion condition (4% O2, 13% CO2, 13% H2O), shows that the char gasification reactions contribute significantly to char conversion, especially for millimeter-sized biomass char particles at high temperatures.  相似文献   

5.
Intumescent fire retardant polypropylene (IFR-PP) materials, primarily comprising polypropylene, ammonium polyphosphate (APP), pentaerythritol (PER), and polyamide-6, were prepared. The burning behavior of IFR-PP materials was measured using a cone calorimeter. The heat transfer processes for IFR-PP materials were studied using a cone calorimeter and a multi-channel data acquisition instrument. The temperature distribution results inside IFR-PP materials indicated that the temperature measured near the top surface of the sample was much higher than the temperature at far from the top surface. The external temperature field measurement results for IFR-PP samples showed that the temperature rose gradually with time before the intumescent char was formed. Then the temperature values of the sample decreased sharply due to the formation of char cap and accumulating gases. The heat transfer processes of IFR-PP materials were also affected by the difference in formulations such as changes in the contents of APP and PER.  相似文献   

6.
In this work, the effects of model dimensionality, particle shrinkage, and boundary layer reactions on particle-scale modelling of biomass char conversion under pulverized fuel combustion conditions have been analysed by using six models: zero-dimensional models with constant particle size (0D_Cons) or shrinking particle size (0D_SPM), one-dimensional models with/without considering particle shrinkage (1D_Cons/1D_SPM), and 1D_Cons and 1D_SPM with considering boundary layer reactions (1D_Cons_BH and 1D_SPM_BH). A comparison with existing experimental data shows that the 1D_SPM_BH model with consideration of intra-particle heat and mass transfer, particle shrinkage, and boundary layer reactions is an appropriate model to describe biomass char conversion over a wide range of conditions. The 0D_Cons model is a good approximation for the conditions of small particle size (< 1 mm) at 1273–1473 K, but overestimates the char conversion rate for larger biomass char particle or at high temperatures (regime III). The 0D_SPM model gives a reasonable prediction on char conversion time but predicts a larger contribution of reaction between char and O2 as compared to the 1D_SPM_BH model. The consideration of intra-particle heat and mass transfer in particle-scale modelling (1D_Cons and 1D_SPM) is beneficial to improving the model prediction of char conversion time and the contributions of char oxidation and gasification reactions. The boundary layer reactions have a significant effect on the prediction of char conversion for large particles (> 1 mm) and high temperatures (> 1473 K). An implication for the selection of a particle-scale model in CFD modelling is also given.  相似文献   

7.
Polypropylene/thermoplastic polyurethane (PP/TPU) blends filled with two different particle sizes (45 and 150 μm) of expandable graphite (EG) were prepared by melt blending. Thermogravimetric analysis (TGA) was carried out to explain the effect of EG on the thermal stability of PP/TPU blends. In addition, the fire behavior of PP/TPU and PP/TPU/EG was investigated by a cone calorimeter. The char morphology and carbonation of the above systems were also characterized. The experimental results indicated that intumescent EG significantly enhanced the thermal stability and fire resistance of these blends. With the smaller particle size of EG, the thermal stability and flame retardancy were improved. The results from TGA and cone calorimeter demonstrated that the addition of EG could retard the degradation of the polymer materials above the temperature of 500°C by promoting the formation of a compact char layer. This char layer prevented further degradation of the polymer matrix and protected it effectively from heat penetrating inside, resulting in lower weight loss rate and better flame-retarded performances.  相似文献   

8.
For oxy-combustion with flue gas recirculation, as is commonly employed, it is recognized that elevated CO2 levels affect radiant transport, the heat capacity of the gas, and other gas transport properties. A topic of widespread speculation has concerned the effect of the CO2 gasification reaction with coal char on the char burning rate. To give clarity to the likely impact of this reaction on the oxy-fuel combustion of pulverized coal char, the Surface Kinetics in Porous Particles (SKIPPY) code was employed for a range of potential CO2 reaction rates for a high-volatile bituminous coal char particle (130 μm diameter) reacting in several O2 concentration environments. The effects of boundary layer chemistry are also examined in this analysis. Under oxygen-enriched conditions, boundary layer reactions (converting CO to CO2, with concomitant heat release) are shown to increase the char particle temperature and burning rate, while decreasing the O2 concentration at the particle surface. The CO2 gasification reaction acts to reduce the char particle temperature (because of the reaction endothermicity) and thereby reduces the rate of char oxidation. Interestingly, the presence of the CO2 gasification reaction increases the char conversion rate for combustion at low O2 concentrations, but decreases char conversion for combustion at high O2 concentrations. These calculations give new insight into the complexity of the effects from the CO2 gasification reaction and should help improve the understanding of experimentally measured oxy-fuel char combustion and burnout trends in the literature.  相似文献   

9.
Pressurized oxy-fuel combustion of coal in fluidized bed (FB) holds the potential to realize low-cost CO2 capture. However, the fundamental study in this manner is still rare due to the difficult access to the pressurized oxy-FB combustion tests. In this work, the experimental study of single char combustion was firstly conducted in a visualized pressurized FB combustor under various operating conditions. Then an experimentally verified particle-scale char combustion model was developed to reveal the dependence of char combustion on parameters. Results showed that the char conversion was accelerated with the increase of pressure, mainly due to the high oxygen diffusion and char gasification. The gasification played a non-negligible role in pressurized oxy-fuel combustion, especially under high oxygen concentration and bed temperature. Increasing oxygen concentration and bed temperature not only promotes the char oxidation rate and particle temperature, but also increases the gasification rate and the share of char conversion via gasification, resulting in shortening the burnout time of char. In addition, a higher fluidization number lowered both the burnout time and peak temperature of char particle, due to the simultaneous improvement of mass and heat transfer. The influences of char size and fluidization number on char gasification conversion ratio are very weak. In addition, the quantitative analysis of the influence of different operating parameters on the combustion process was obtained by model sensitivity analysis.  相似文献   

10.

An experimental study was performed to investigate the effect of surface coating on the critical heat flux for downward facing boiling on the outer surface of a hemispherical vessel. Steady-state boiling experiments were conducted in the subscale boundary layer boiling (SBLB) facility using test vessels with metallic microporous coatings to obtain the local boiling curves and the local critical heat flux (CHF) limits. Similar heat transfer performance was observed for microporous aluminum and microporous copper coatings. When compared to the corresponding data without coatings, the boiling curves for the coated vessels were found to shift upward and to the right. This meant that the CHF limit was higher with surface coating and that the minimum film boiling temperatures were located at higher wall superheats. In particular, the microporous coatings were found to enhance the local CHF values appreciably at all angular locations explored in the experiments. Results of the present study showed that the microporous aluminum coating was very durable. Even after many cycles of steady state boiling, the vessel coating remained rather intact, with no apparent changes in color or structure. Although similar heat transfer performance was observed for microporous copper coatings, the latter were found to be much less durable and tended to degrade after several cycles of boiling.  相似文献   

11.
A mathematical model of the propagation of the front of decomposition of active fire-retardant intumescent paints in pulsed mode is developed. A hypothesis explaining the mechanism of the experimen-tally observed pulsed modes of decomposition front propagation by the existence of an exothermic step in the decomposition reaction, leading to the self-acceleration of the reaction and rapid burnout of the reacting substance layer, is suggested. A theory of the propagation of the decomposition front in the pulsed mode based on a minimum number of empirical parameters obtainable from experiment is developed. Based on numerical simulation results, formulas are derived for predicting the time history of the thickness of the char structure and the time during which the fire-retardant composition can protect the object from fire. These formulas can be used to calculate the desired thickness of the fire-retardant coating that would withstand a fire or a thermal agent of given intensity for a desired time.  相似文献   

12.
Flame-retardant expandable graphite (EG)/silicone rubber (SR) composites were prepared using nano-CaCO3 particles as reinforcement filler. In addition to mechanical measurements, limited oxygen index (LOI), UL-94 and cone calorimeter tests (CCT), the thermal properties were tested by thermogravimetric analysis (TGA). The results showed that the content and particle size of the EG both had large effects on the flammability and mechanical properties of the EG/SR blends. The composites that contained 25 phr EG (50–80 mu) had excellent LOI values, 47–48, and achieved the UL-94 V-0 level while the pure SR sample had the LOI value of 25 and achieved the UL-94 V-2 level. The data obtained from the CCT indicated that the addition of EG decreased remarkably the heat release rate, smoke emission, and mass loss rate of the composites. SEM microphotographs of the EG/SR composites before and after combustion demonstrated that EG underwent a large volume expansion, and the multiporous char structure blocked heat transfer and protected the substrate from fire.  相似文献   

13.
The effect of a dielectric coating on the near-field radiative heat transfer between two plane surfaces is numerically studied in the framework of the fluctuational electrodynamics. The dielectric coating is assumed to be a SiC or SiO2 film, which is on top of the emitter. The results show that the near-field radiative flux between the plane surfaces can be either diminished or enhanced by the dielectric coating, depending on the thermal radiative properties of the emitter and the receiver. Furthermore, the dielectric coating effect on the near-field radiative flux can be very different from that on the far-field radiative flux. Detailed analysis on the variations of the TE- and TM-wave components of the radiative flux by adding the dielectric coating is provided, along with the physical mechanisms that account for these changes. Dielectric coatings such as SiC and SiO2 films are widely seen in microelectronic structures and nanofabrication devices. The results obtained in this work should be valuable for further study and nanotechnological applications of near-field radiative heat transfer.  相似文献   

14.
The coatings mainly composed of nanostructured TiO2 were deposited on Ti6Al4V alloy by microarc oxidation (MAO). The duplex coatings of microarc oxidation combined with spraying graphite process were fabricated for the antifriction purpose. The tribological properties of unpolished, polished and duplex coating against steel under dry friction conditions were examined. It is found that antifriction property of the polished microarc oxidation coating is superior to that of the unpolished one. The improvement is attributed to the low surface roughness and the nanocrystalline structure of coatings. The duplex coating exhibits best antifriction property, registering a lower and steady friction coefficient of ≈0.12 than that of the polished microarc oxidation coating sliding in the similar condition. The good tribological property is attributed to the specially designed duplex structure, the coating adhering strongly to the substrate and serving as the load-supporting underlayer and the graphite layer on top of it working as solid lubricant.  相似文献   

15.
Electrophoretic deposition (EPD) was showed to be a feasible and convenient method to fabricate NiCoCrAlY coatings on nickel based supperalloys. The microstructure and composition of the NiCoCrAlY coatings after vacuum heat treatment were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDAX). Isothermal-oxidation test was performed at 1100 °C in static air for 100 h. The results show that the major phases in electrophoretic deposited and vacuum heat treated NiCoCrAlY coating are γ-Ni and γ′-Ni3Al phases, also there is an extremely small quantity of Al2O3 in the coating. Composition fluctuations occur in the coating and a certain amount of titanium diffuse from the superalloy substrate to the top of the coating during vacuum heat treatment. The oxidation test results exhibit that the oxidation kinetics of this coating has two typical stages. The protective oxide layer is mainly formed in the initial linear growth stage and then the oxide layer hinders further oxidation of the coating in the subsequent parabolic growth stage. The coating can effectively protect the superalloy substrate from oxidation. A certain amount of rutile TiO2 is formed in the coating during oxidation and it is adverse to the oxidation resistance of the coating.  相似文献   

16.
马琛  马壮  高丽红  王富耻 《中国光学》2017,10(2):249-255
为了分析高能激光对鳞片石墨改性酚醛树脂涂层的损伤机理,本文采用激光辐照方法研究激光对该涂层的损伤过程。首先,制备出纯酚醛树脂涂层和鳞片石墨改性酚醛树脂涂层,使用不同的激光参数进行激光辐照实验,根据损伤区域形貌和损伤面积分析鳞片石墨的对涂层的改性作用,分析损伤区域微观形貌和内部残炭的石墨化程度,通过对损伤中心进行三维成像来分析烧蚀凹坑的尺寸与烧蚀深度。最后,根据不同颜基比涂层在激光辐照过程中损伤区域的面积和显微形貌,分析了颜基比对激光损伤涂层过程的影响。分析结果表明:酚醛树脂经激光辐照后会裂解生成石墨化程度不同的残炭,经鳞片石墨添加改性后,损伤区域的面积相比于纯酚醛树脂涂层最大可增加35 mm2。由此可知鳞片石墨的添加改性增强了涂层的横向散热能力,但过高的颜基比会使具有粘附作用的残炭生成量减少,进而导致鳞片石墨脱落明显,涂层损伤严重。  相似文献   

17.
The model that takes chemical reactions, heat and mass transfers in the boundary layer of the particle into account simultaneously, is developed for simulating the combustion of a pulverized coal particle. The FTIR in situ temperature-measurements and the comparison between numerical simulations for the pulverized coal and the devolatilized char show that the volatile flame induces the combustion of the primary product of surface oxidation CO. Due to the influence of volatile flame, the char particle can be ignited at temperature lower than its heterogeneous ignition temperature, which elucidates the physical essence of joint hetero-homogeneous ignition mode discovered by Jüntgen.  相似文献   

18.
O2/H2O combustion, as a new evolution of oxy-fuel combustion, has gradually gained more attention recently for carbon capture in a coal-fired power plant. The physical and chemical properties of steam e.g. reactivity, thermal capacity, diffusivity, can affect the coal combustion process. In this work, the ignition and volatile combustion characteristics of a single lignite particle were first investigated in a fluidized bed combustor under O2/H2O atmosphere. The flame and particle temperatures were measured by a calibrated two-color pyrometry and pre-buried thermocouple, respectively. Results indicated that the volatile flame became smaller and brighter as the oxygen concentration increased. The ignition delay time of particle in dense phase was shorter than that in dilute phase due to its higher heat transfer coefficient. Also, the volatile flame was completely separated from particles (defined as off-flame) in dense phase while the flame lay on the particle surface (defined as on-flame) in dilute phase. The self-heating of fuel particles by on-flame in dilute phase was more obvious than that in dense phase, leading to earlier char combustion. At low oxygen concentration, the flame in the H2O atmosphere was darker than that in the N2 atmosphere because the heat capacity of H2O is higher than that of N2. With the increase of oxygen concentration, the flame temperature in the O2/H2O atmosphere was dramatically enhanced rather than that in the O2/N2 atmosphere, where the diffusion rate of oxygen in O2/N2 atmosphere became the dominant factor.  相似文献   

19.
The impact of microwave radiation and heat treatment on the structure, morphology, and physical and mechanical properties of diamond-like coatings is studied; recrystallization of the coating structure is revealed. It is ascertained that microwave irradiation of diamond-like coatings changes their physical and mechanical properties.  相似文献   

20.
采用大气等离子喷涂(APS)技术在铝基体表面制备氧化锆(ZrO2-20%Y2O3,质量分数)热障涂层,并用脉冲激光对其进行重熔处理,研究了激光重熔对涂层组织形貌、物相转变和隔热性能的影响。研究结果表明激光的比能量对涂层的成型及性能有重要影响,过高的比能量会使涂层表面粗糙度增加,涂层成型变差。在选用合适的低比能量激光重熔条件下,扫描电镜观察结果表明经激光重熔可消除喷涂态涂层的孔隙和层状结构。对粉末和重熔前后的涂层进行了X射线衍射分析,结果表明喷涂及重熔过程中都没有发生相变;隔热试验结果表明重熔后涂层的隔热温度有所下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号