首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mechanical and damping properties of blends of ethylene-vinyl acetate rubber (VA content >40% wt) (EVM)/ethylene-propylene-diene copolymer (EPDM) and EVM/nitrile butadiene rubber (NBR), both with 1.4 phr BIPB (bis (tert-butyl peroxy isopropyl) benzene) as curing agent, were investigated by dynamic mechanical analysis (DMA). The effect of added polyvinyl chloride (PVC), amido donor N-cyclohexyl-2-benzothiazole sulfonamide (CZ), and dicumyl peroxide (DCP) as a substitute curing agent, on the damping and mechanical properties of both rubber blends were studied. The results showed that in EVM/EPDM/PVC blends, EPDM was immiscible with EVM and could not expand the damping range of EVM at low temperature. PVC was miscible with EVM and dramatically improved the damping property of EVM at high temperature while keeping good mechanical performance. In EVM/NBR/PVC blends, PVC was partially miscible with EVM/NBR blends and remarkably widened the effective damping temperature range (EDTR) from 41.1°C for EVM/NBR to 62.4°C. Curing agents BIPB and DCP had a similar influence on EVM/EPDM blends. DCP, however, dramatically raised the height of tan δ peak of EVM/NBR = 80/20 and expanded its EDTR to 64.9°C. CZ had no obvious influence on the EVM/EPDM blends cured with BIPB. However, a small content of CZ enlarged the tan δ peak of EVM/NBR = 80/20 in both height and width, but at the cost of a deterioration of mechanical performance.  相似文献   

2.
The damping and mechanical properties of ethylene-vinyl acetate rubber (EVM)/nitrile butadiene rubber (NBR) blends, with BIPB (bis (tert-butyl peroxy isopropyl) benzene) as curing agent, were investigated by DMA. It was proved by mechanical performance, DMA and crosslink density data that a chemical crosslinking reaction occurred between EVM and NBR. A new tan δ peak appeared between 40°C and 60°C in EVM/NBR = 80/20, which we suggest was due to a new molecular chain generated between EVM and NBR. Thus, the effective damping temperature range (EDTR) of EVM/NBR = 80/20 was widened from 31.6°C of EVM and 31.7°C of NBR to 40.7°C. The addition of sulfur, as a curing agent for NBR, greatly raised the height of the damping peak of EVM/NBR blend, but only slightly widened the EDTR at a cost of deterioration of mechanical performance. Zinc diacrylate (Zn (Ac)2), as a possible graft addition to the blends, enlarged the damping peak of EVM/NBR, especially widening the EDTR of EVM/NBR = 80/20 to 50.9°C, but with a decline of mechanical properties. PVC was partially miscible with EVM/NBR blends and dramatically widened the EVM/NBR = 80/20 EDTR to 62.4°C.  相似文献   

3.
In this study the blends of polyethylene terephthalate (PET)/ethylene propylene diene rubber (EPDM) in the presence of multi-walled carbon nanotubes (MWCNT) (1 and 3?wt %) were prepared by melt compounding in an internal mixer. Mechanical and morphological properties of the nanocomposites were investigated. The thermal behaviors of the PET/EPDM nanocomposites were also investigated, by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results of the mechanical tests showed that the tensile strength, elastic modulus and the hardness of the blends were increased with increasing CNT, while the impact strength and elongation at break decreased. The DSC and TGA results showed an increase of melting temperature (Tm) and degradation temperature of the nanocomposites with the addition of the carbon nanotubes, because the carbon nanotubes serve both as nucleating agents to increase Tm and prevent the composite from degradation to increase the thermal stability. The microstructure of the composites was evaluated through field emission scanning electron microscopy (FESEM) and the results showed a good distribution of the MWCNT within the polymer blend.  相似文献   

4.
Dynamically vulcanized blends based on polyvinylidene fluoride (PVDF)/acrylonitrile butadiene rubber (NBR) were prepared and characterized. The mixing torque and dynamic rheology analyses showed that the NBR phase increased the viscosity of the blends. Scanning electron microscopy (SEM) results showed that the NBR phase was in the form of spherical particles dispersed in the PVDF phase during dynamic vulcanization. Comparing PVDF-rich and NBR-rich blends, the size of the rubber particles in the NBR-rich blends were larger than those in PVDF-rich blends. Differential scanning calorimetry (DSC) results showed that the addition of the NBR phase reduced the PVDF crystallinity and Tm. Thermal gravimetric analysis (TGA) results showed that the dynamically vulcanized PVDF/NBR blends had a higher residual char mass than the neat PVDF and NBR. For PVDF-rich blends, the PVDF can be highly toughened by NBR; the Izod impact strength of the PVDF/NBR (70/30) blend was 77.5 kJ/m2, which was about six times higher than that of pure PVDF. For rubber-rich blends, the PVDF component was beneficial to the mechanical properties of the blends, which can be used as thermoplastic elastomers.  相似文献   

5.
Abstract

Thermoplastic elastomers and their foams were prepared by blending elastomeric acrylonitrile butadiene rubber (NBR) and rigid poly(lactic acid) (PLA) with various PLA compositions ranging between 0 and 40%. The thermal and mechanical properties and the morphologies of the blends with various PLA contents were investigated through universal testing machine, differential scanning calorimetry, thermogravimetric analysis, and scanning electron microscope analysis. The rheological properties during gel formation were in situ monitored through the evolution of torque with curing time. Furthermore, the microcellular structures and physical properties of the NBR/PLA foams prepared using organic blowing agents were studied. The NBR/PLA blends showed a two-phase morphology made of a continuous NBR matrix and micron or submicron nodules and the tensile strength and modulus; also, hardness of the NBR/PLA blends increased with the increase of the added PLA content. While the foamed samples exhibited a similar cell structure and foaming ratio to that of the pure NBR, the cell formation was considerably reduced as the added PLA content exceeded 30%. We conclude that the mechanical properties of NBR thermoplastic elastomer as well as its foams can be controlled by a judicious introduction of rigid and biodegradable PLA.  相似文献   

6.
Carbon black (CB) is one of the most important fillers for rubber and plastics materials. How to describe the CB network is a fundamental problem for establishing relationships between the CB network and the mechanical properties of filled rubber. In view of the electrical conductivity of CB, an infinite circuit consisting of numerous contact resistors, interconnected with each other, is proposed to simulate the CB network in filled rubber; the resistances were determined by considering the tunneling conduction mechanism and a Gaussian distribution for the CB aggregate junction width. As an example, the electrical resistivity of CB (N330) filled natural rubber during uniaxial deformation was studied. It was found that the logarithm of resistivity was an approximately linear function of the extension ratio, and the resistivity increased with the increase of average number of primary particles per aggregates. Additionally, some published experimental points lie between the curves calculated for five primary particles and for seven primary particles per aggregate at extension ratios below 1.2. The calculations suggested that the average number of primary particles per aggregate for CB type N330 might be between five and seven.  相似文献   

7.
The effects of different processing methods (direct extrusion, two-step extrusion or lateral injection extrusion) on the morphology of polypropylene (PP)/ethylene-propylene-diene terpolymer (EPDM)/calcium carbonate nanoparticles (nano-CaCO3) ternary blend were investigated, including the morphology of the EPDM phase and the distribution of nano-CaCO3 particles, by means of scanning electron microscopy (SEM). The results showed that the processing methods had a significant influence on the morphology of the EPDM phase and the distribution of nano-CaCO3 particles. In the lateral injection extruded blends, it was amazingly observed that the EPDM particles encapsulated the PP phase tightly, and the dimension of EPDM particles was remarkably decreased. It was also found that the content of nano-CaCO3 particles in the matrix of the lateral injection extruded blends was less than that of the two-step extruded blend, and that of the direct extruded blend was most. The properties of the ternary blend, including dynamic mechanical properties, rheological properties, and crystallization, were characterized in order to confirm the variety of morphologies caused by the different processing methods. The differences in the crystallization temperature, elastic modulus, and glass transition temperature of the blends prepared by different methods well agreed with the variation of their morphology.  相似文献   

8.
The degree of dynamic vulcanization, mechanical properties, rheological behavior, and the ageing-resistant performance of trans 1,4-polyisoprene (TPI)/polypropylene (PP) and ethylene propylene diene rubber (EPDM)/PP thermoplastic vulcanizates with a blend ratio of 60/40 were investigated comparatively. The results showed that TPI had fully dynamically vulcanized when mixed with PP in the Hakke mixer chamber (175°C, 60 rpm) while EPDM had only partly dynamically vulcanized due to its saturated main chain backbone. With increased sulfur content, the torque at the end of the curing curves of the two thermoplastic vulcanizates (TPVs) increased in the curing characteristics measuring process as the degree of crosslinking increased. Comparing the two blends, TPI/PP-TPVs were possessed of a better mobility, a little lower tensile strength and tear strength, a little higher 100% modulus and hardness, and much lower elongation at break. EPDM/PP-TPVs had better ageing-resistant characteristics due to EPDM's saturated main chain backbone.  相似文献   

9.
Epoxidized natural rubber (ENR50) and two different kinds of organoclay (C30B and C15A) were used in blends of styrene-butadiene rubber (SBR) and acrylonitrile butadiene rubber (NBR) and their effects upon interaction between phases, morphology, and mechanical properties of the blends were investigated. The compounds were characterized by means of Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry (DSC). The obtained results showed formation of hydrogen bonding between the compounds ingredients due to incorporation of C30B, especially in presence of ENR. AFM and FE-SEM analysis revealed good dispersion of the nanoparticles in the polymer matrix upon addition of ENR as well as better dispersion of C30B than C15A in the NBR phase. XRD results showed a greater expansion of the silicate layers by simultaneous use of organoclay and ENR Incorporation of organoclay alone or in combination with ENR in the blends caused shifting of the SBR Tg toward the NBR Tg. The tensile properties of the blends showed improvement by using nanoparticles in the presence of ENR.  相似文献   

10.
Thermoplastic vulcanizates (TPVs) based on nitrile butadiene rubber (NBR)/ acrylonitrile-butadiene-styrene (ABS) blends were prepared by dynamic vulcanization, and then compatibilized by styrene-butadiene-styrene block copolymer (SBS). The effects of SBS compatibilizer on mechanical properties, Mullins effect, and morphological properties of the TPVs were investigated systematically. Experimental results indicated that SBS had an excellent compatibilization effect on the dynamically vulcanized NBR/ABS TPVs. The tensile strength increased from 9.4 to 15.8 MPa and the elongation at break went through a maximum value when the dosage of SBS was only 1 phr. Mullins effect results showed that the compatibilized NBR/ABS TPV had relatively lower residual deformation and internal friction loss than the NBR/ABS TPV, indicating the improvement of elasticity. Morphology studies showed that the vulcanized NBR particles were dispersed evenly in the TPVs and the dimensions of NBR particles were decreased remarkably with the incorporation of SBS compatibilizer.  相似文献   

11.
The preparation of EVM (ethylene‐vinyl acetate copolymer rubber)/TPU (thermoplastic polyurethane) blends with various ratios and their compatibility were investigated. The influence of mixing technology, filler type and content, the VA content in EVM (40 and 70 wt.%) and the addition of compatibilizers on the mechanical properties and the compatibility of the EVM/TPU blends were systematically studied.

The test results showed that in preparation of the blend, fillers should be added to the blend to improve the processability and that among the fillers used, silica showed the best reinforcing effect on the blends. The best parameters for blending EVM and TPU in a HAAKE rheometer was: mixing temperature 160°C, rotor speed 45 rpm and mixing time 15 min. The test results also showed that the compatibility of EVM 700 (VA=70%) with TPU was better than that of EVM400 (VA=40%). The addition of a compatibilizer EVM‐g‐MAH and EVM‐g‐FME improved the processability of the blends. The addition of EVM‐g‐MAH also improved the compatibility of EVM 700/TPU blend; both the mechanical properties and hot‐air aging properties of the blends were improved. However, the addition of EVM‐g‐FME did not improve the compatibility of EVM/TPU blends.  相似文献   

12.
The modification of the compatibility between polyethylene (PE) and polypropylene (PP) by using irradiated PE wax (PE wax) is the purpose of this study. In this part, polymer blends based on various ratios of PE and PP were blended with 2.5% PE wax in all the blend ratios to determine the optimum ratio of the blend to be compatabilized. The influence of PE wax as a compatibilizing agent for PE and PP blend was investigated through the measurements of thermal, mechanical and morphological properties. The PP/PE blends modified by this method showed higher mechanical properties than those of the unmodified blends. Also, stress and strain of the modified blend having ratio (60/40) PP/PE blend recorded the maximum mechanical behavior. Scanning electron microscopy (SEM) micrographs of modified blends showed an indication of strong interfacial adhesion and a smooth continuous surface in which giving a support to the effect of irradiated PE wax as a tool for improving the compatibility.  相似文献   

13.
The effect of four types of silane coupling agents on the mechanical and thermal properties of silicone rubber and ethylene–propylene–diene monomer (M-class) rubber (EPDM) blends is studied, namely, isobutyltriethoxysilane (BUS), acryloxypropyltriethoxysilane (ACS), aminopropyltriethoxysilane (AMS), and vinyltriethoxysilane (VIS). ACS and VIS increase the crosslink density of the blends, which results in higher tensile strength, modulus, and thermal stability, but lower elongation at break compared with the other silanes. However, the blend containing BUS shows highest tanδ in the temperature range of 45°C to 200°C. Thermogravimetric analysis shows two steps of degradation for all the samples, but little difference with the varied silanes.  相似文献   

14.
Vegetable oil modified phenolic resin (PF) mixed with four kinds of rubber modifiers, i.e., styrene butadiene rubber, styrene butadiene 2-vinyl pyridine rubber, nitrile butadiene rubber, and carboxyl nitrile butadiene rubber (CNBR), were used as matrices for organic friction materials. The mechanical and thermal degradation properties of all of the blends were investigated. Friction and braking tests of the organic friction materials based on the different matrices and reinforced with hybrid fibers were carried out. The results showed that the resin was most compatible with CNBR; the CNBR/PF blend possessed much higher impact and toughness, and the friction material based on this blend as a matrix exhibited better friction and braking performance. It was concluded that CNBR, the rubber with the most reactive groups, resulted in better mechanical properties of the friction material, and hence optimized the friction, wear and braking performances.  相似文献   

15.
The compatibilization by olefin block copolymer (OBC) in the blends of polypropylene (PP)/ethylene-propylene-diene terpolymer (EPDM) and the phase morphology of the ternary blends were investigated by rheology, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) measurements. It was found that the PP/EPDM blends exhibited enhanced mechanical properties in the presence of OBC. The addition of OBC had a significant influence on the phase separation behavior of the blends. For the PP/EPDM-50/50 heterogeneous blends, the addition of 15 phr OBC enabled the two-phase morphology to change from a droplet-matrix structure to a co-continuous one. In the temperature range of 150 to 200 °C, OBC was shown to have a better compatibility with PP than EPDM. The changes in viscosity ratio of the dispersed phase to matrix phase caused by adding OBC might be the dominant factor in controlling the coalescence of the dispersed phase domains. For the crystallization behavior of PP/EPDM/OBC ternary blends, OBC was found to have an induction effect on the formation of β-crystals of PP that was not proportional to the volume of OBC addition. In addition, DSC results showed that PP could induce the OBC crystallization and improve the crystallization temperature of OBC. The existence of simultaneous crystallization behavior between PP and OBC was also observed. A possible mechanism of phase evolution induced by crystallization was proposed.  相似文献   

16.
Abstract

A series of polycarbonate (PC)/acrilonitrile butadiene rubber (NBR)/multi-wall carbon nanotube (MWCNT) nanocomposites were prepared via melt compounding in an internal mixer. The effect of the MWCNT content on the morphology and the thermal and mechanical properties of the prepared nanocomposites were studied. The morphologies of the samples were investigated by field-emission scanning electron microscopy (FESEM) and the thermal properties by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The tensile mechanical results of the nanocomposites showed a decrease in elongation at break with an increase of only 2?wt% of MWCNT content in the PC/NBR blends, and an increasing value in elastic modulus and tensile strength of the nanocomposites. The FESEM images showed that the MWCNTs had good affinity with the polymers and no compatibilizer was needed for making the nanocomposites. The DSC and TGA results showed an increase in thermal stability with addition of MWCNTs because of the more thermally stable carbon nanotubes particles which was uniformly dispersed within the nanocomposites.  相似文献   

17.
Poly(vinyl chloride) (PVC)/acrylonitrile-butadiene rubber (NBR) blends can be obtained through a dynamic vulcanization process as a melt-processible thermoplastic elastomer which produces parts that look, feel and perform like vulcanized rubber with the advantage of being processible as a thermoplastic material. In this study, a vulcanized thermoplastic was obtained by in situ dynamic vulcanization of PVC/NBR blends using a sulphur/ tetramethylthiuram disulphide (TMTD) and mercaptobenzothiazyl disulphide (MBTS) curative system during processing at the melt state. The blends were melt-mixed using a Haake Rheomix 600. The curing behavior of NBR was then investigated by a Monsanto rheometer. The thermal analyses were performed and the cross-linking at different mixing times was calculated using DSC. FT-IR was also performed for characterization of the blends. The cross-link densities of the samples were measured by a swelling method. The degree of cure increases with the mixing time. The cross-linking formation was verified through the formation of C─ S bonds in the blends.  相似文献   

18.
Four miktoarms star-shaped polybutadiene-Sn-poly(styrene-butadiene) rubber (MSS-PB-PSBR) with 1,1-diphenylhexyl at the ends of the arms were prepared by two different coupling techniques. One technique was a one-step technology, from which two miktoarms star styrene-butadiene rubbers, called AMSS-PB-PSBR, were obtained in which the four arm stars had varying ratios of PB:PSBR arms; another was a two-step technology, from which another two miktoarms star styrene-butadiene rubbers, called BMSS-PB-PSBR, were obtained in which all consisted of PB-Sn-(PSBR)3 stars. The molecular structure parameters and morphology-properties of the four MSS-PB-PSBR were determined and studied, and compared with that of a star-shaped styrene-butadiene rubber (S-SSBR)/poly butadiene rubber (PBR) blend. The results showed that the total coupling efficiency (the ratio of the total number of polymer chains (arms) coupled by SnCl4 to that of the total number of polymer chains) of the MSS-PB-PSBR was higher than 60%. However, the coupling efficiency of the polybutadiene arms of BMSS-PB-PSBR was obviously higher than that of the AMSS-PB-PSBR. Compared with the S-SSBR/PBR blend, MSS-PB-PSBR had a more uniform distribution of the PB phase and a smaller phase size of PB. It was found that MSS-PB-PSBR composites filled with carbon black (CB) had a lower Payne effect than the S-SSBR/PBR/CB composite, with the BMSS-PB-PSBR/CB composites being especially lower. The BMSS-PB-PSBR/CB composites had higher mechanical properties and lower rolling resistance than the AMSS-PB-PSBR/CB composites due to the high coupling efficiency of the polybutadiene arms; the results indicated that the two-step technology was better than the one-step technology for preparing the tread material of “green” tires.  相似文献   

19.
Blends of styrene butadiene rubber (SBR)/methyl-vinyl silicone rubber (MVQ) filled with dough molding compound (DMC) were prepared and the effects of various amounts of the SBR, as a compatibilizer of MVQ and DMC, on the mechanical properties and the oxygen index of the DMC filled SBR/MVQ blends were investigated. Dynamic mechanical analysis (DMA) and infrared spectrum analysis (IR) of the DMC/SBR/MVQ blends were also investigated. The results showed that the mechanical properties of the DMC filled MVQ blends were improved when SBR was used as a compatibilizer; the best mass ratio was 60 phr (parts per hundred total rubber) DMC, 25 phr SBR and 75 phr MVQ. The volume electric resistivities of the DMC filled SBR/MVQ blends with various DMC mass ratios were all above 5.8?×?1012 Ω?m; i.e., the electrical insulating property of the blends was excellent. Compared with the blends without DMC and the blends without SBR, the energy storage modulus and the peak area of the loss factor tan δ of the DMC reinforced SBR/MVQ blends were largest; the addition of DMC and SBR improved the thermal properties of the blends.  相似文献   

20.
It has been known that the carbon black (CB) network is responsible for the electrical and mechanical behaviors of filled rubber. Due to the complexity involved in the filled rubber in relation to the conductive mechanism of the CB network, there has been little work concerned with simulation of the electrical behavior at large strains. Based upon an infinite circuit model, the electrical resistivity of CB filled rubber under elongation is simulated. For CB (N330) filled natural rubber with volume fraction of 27.5%, the simulated electrical resistivity increases with elongation at small stains, corresponding to the breakup of the agglomerates. The reduction in resistivity at larger strains corresponds to the decrease of the junction width, which results in a decrease of the contact resistance. Good agreement is found between the simulations and the experimental data available in the literature. The simulated results confirm the effects of the breakdown of the CB network and the alignment of CB aggregates under strain on the electrical resistivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号