首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents a numerical investigation of the flow field in a screw pump designed to circulate biological fluid such as blood. A simplified channel flow model is used to allow analysis using a Cartesian set of coordinates. Finite analytic (FA) numerical simulation of the flow field inside the channel was performed to study the influence of Reynolds number and pressure gradient on velocity distribution and shear stresses across the channel cross-section. Simulation results were used to predict flow rates, circulatory flow and the shear stresses, which are known to be related to the level of red blood cell damage (hemolysis) caused by the pump. The study shows that high shear levels are confined to small regions within the channel cross-section, but the circulatory nature of the flow causes an increased percentage of blood elements to pass through the high shear regions, and increases the likelihood of cell damage.  相似文献   

2.
Although emulsion pumping is a subject of growing interest, a detailed analysis of the fluid dynamic phenomena occurring inside these machines is still lacking. Several computational investigations have been conducted to study centrifugal pumps carrying emulsion by analyzing their overall performance, but no studies involved the rheological behavior of such fluids. The purpose of this study is to perform a computational analysis of the performance and flow characteristics of a centrifugal pump with volute handling emulsions and oil–water mixtures at different water cuts modeled as a shear-thinning non-Newtonian fluid. The studied pump consists of a five-bladed backward curved impeller and a volute and has a specific speed of 32 (metric units). The rheological properties of the mixtures studied were measured experimentally under a shear rate ranging from 1 s−1 to 3000 s−1 and were fitted to conventional Cross and Carreau effective viscosity models. Numerical results showed the flow topology in the pump is directly related to the viscosity plateau of the pseudoplastic behavior of emulsions. The viscosity plateau governs pump performance by influencing the loss mechanisms that occur within the pump. The larger the ν, the less recirculation loss the fluid experiences, and conversely, the smaller the value of ν0, the less friction loss the fluid experiences.  相似文献   

3.
许松林  朱东 《物理学报》2015,64(20):208701-208701
很多研究表明, 动脉粥样硬化通常发生在具有复杂血液动力学的区域, 比如分叉动脉和弯曲动脉. 这些地方常伴随有低壁面剪切力或震荡壁面剪切力, 这是动脉粥样硬化形成的一大诱因. 使用计算流体力学软件对2D颈动脉分叉血管进行了模拟, 研究了脂肪颗粒在颈动脉中的运动及其对血液动力学的影响. 研究表明: 1)血管狭窄对于脂肪颗粒的运动有重要影响, 同时也影响栓塞的形成; 2)脂肪颗粒可能会黏附在血管壁面, 但由于血流的冲击作用, 脂肪颗粒会随后在壁面略微铺展; 3)颈动脉狭窄区域后方是下一个血栓的可能生长位点; 4)当栓塞形成时, 速度和壁面剪切力分布将变得复杂多变, 这对于血管是有害的.  相似文献   

4.
By using the lattice Boltzmann method(LBM)pulsatile blood flows were simulated in three-dimensional moderate stenosed and recanalized carotid bifurcations to understand local hemodynamics and its relevance in arterial atherosclerosis formation and progression.The helical flow patterns,secondary flow and wall dynamical pressure spatiotemporal distributions were investigated,which leads to the disturbed shear forces in the carotid artery bifurcations.The wall shear stress distributions indicated by time-averaged wall shear stress(TAWSS),oscillatory shear index(OSI),and the relative residence time(RRT)in a cardiac cycle revealed the regions where atherosclerotic plaques are prone to form,extend or rupture.This study also illustrates the point that locally disturbed flow may be considered as an indicator for early atherosclerosis diagnosis.Additionally the present work demonstrates the robust and highly efficient advantages of the LBM for the hemodynamics study of the human blood vessel system.  相似文献   

5.
何钰泉  梁宝社  刘书声 《物理学报》1998,47(10):1658-1664
圆Couette系统已成为研究从层流转捩为湍流以及有限几何尺寸对图案选择影响的范例.本文以实验和计算机模拟方法研究中等半径比圆Couette系统的稳定性.考察同轴独立旋转圆筒之间的粘性不可压缩流体运动,推广了经典的Rayleigh离心不稳定性理论,导出稳定性判据,用来定量地确定稳定界限.实验采用了流动显示和激光散射技术.仪器有半径比η=0.699,形状比Γ=18.流动状态相图中的显著特征是新的首次失稳态:当外筒静止或反向旋转时,首次失稳出现具有非零方位角波数的螺旋涡流,在轴向和方位角方向为行进波,而并非与时间无关的Taylor涡.初步实验所得的转捩Reynolds数与数值计算结果一致.实验室和数值实验显示出半径比对图案形成和转捩序列的影响. 关键词:  相似文献   

6.
空化流动诱导离心泵低频振动的实验研究   总被引:2,自引:0,他引:2  
空化流动严重影响泵安全稳定运行,为充分认识泵内空化发展程度及其诱导的低频振动特性,设计了一台离心式模型泵作为研究对象,同时采用高速摄影及振动加速度测试手段,实现了叶轮内部空化流动的可视化及对应的泵体低频振动信号提取,分析了空化泡形态随空化发展的演化规律,对比了空化发生前后泵体低频振动频谱特性,探讨了泵体总振级水平、离散频率下振动加速度幅值随空化发展程度的变化,提出振动临界汽蚀余量可作为空化程度的另一判据,叶频时的振动加速度幅值变化亦可作为泵内空化程度的表征。  相似文献   

7.
The stability of the shear banded flow of a Maxwellian fluid is studied from an experimental point of view using rheology and flow visualization with polarized light. We show that the one-layer homogeneous flow cannot sustain shear rates corresponding to the end of the stress plateau. The high shear rate branch is not found and the shear stress oscillates at the end of the plateau. An azimuthal instability appears: the shear induced band becomes unstable and the interface between the two bands undulates in time and space with a period τ, a wavelength λ and a wave vector k parallel to the direction of the tangential velocity.  相似文献   

8.
Flow visualization of a near wall flow is of great importance in the field of biofluid mechanics in general and for studies of pathologic vessel enlargements (aneurysms) particularly. Wall shear stress (WSS) is one of the important hemodynamic parameters implicated in aneurysm growth and rupture. The WSS distributions in anatomically realistic vessel models are normally investigated by computational fluid dynamics (CFD). However, the results of CFD flow studies should be validated. The recently proposed Wall-PIV method was first applied in an enlarged transparent model of a cerebri anterior artery terminal aneurysm made of silicon rubber. This new method, called Wall-PIV, allows the investigation of a flow adjacent to transparent surfaces with two finite radii of curvature (vaulted walls). Using an optical method which allows the observation of particles up to a predefined depth enables the visualization solely of the boundary layer flow. This is accomplished by adding a specific molecular dye to the fluid which absorbs the monochromatic light used to illuminate the region of observation. The results of the Wall-PIV flow visualization were qualitatively compared with the results of the CFD flow simulation under steady flow conditions. The CFD study was performed using the program FLUENT®. The results of the CFD simulation were visualized using the line integral convolution (LIC) method with a visualization tool from AMIRA®. The comparison found a very good agreement between experimental and numerical results.  相似文献   

9.
张春兵  刘政  郭霞生  章东 《中国物理 B》2011,20(2):24301-024301
Microbubbles promise to enhance the efficiency of ultrasound-mediated drug delivery and gene therapy by taking advantage of artificial cavitation nuclei.The purpose of this study is to examine the ultrasound-induced hemolysis in the application of drug delivery in the presence of microbubbles.To achieve this goal,human red blood cells mixed with microbubbles were exposed to 1-MHz pulsed ultrasound.The hemolysis level was measured by a flow cytometry,and the cavitation dose was detected by a passive cavitation detecting system.The results demonstrate that larger cavitation dose would be generated with the increase of acoustic pressure,which might give rise to the enhancement of hemolysis.Besides the experimental observations,the acoustic pressure dependence of the radial oscillation of microbubble was theoretically estimated.The comparison between the experimental and calculation results indicates that the hemolysis should be highly correlated to the acoustic cavitation.  相似文献   

10.
In this paper, the method of dynamic flow birefringence (DFB) have been studied extensively under the consideration of an application to cardiovascular models. The method utilises the optical interference patterns observed in the birefringent flow for determination of the fluid shear stress and velocity distribution. In order to measure a flow in a cardiovascular model, an assumption of a simplified stress–optical relation in a pulsatile flow is suggested and special experimental techniques such as birefringent fluid for simulating blood and new experimental system have been developed. Application studies focus on pulsatile flows in typical models, namely arterial bifurcation and mechanical heart valves. Experimental results are discussed and compared with those of other researchers.  相似文献   

11.
Flow visualization in realistic models is very important for the study of pathological vessel enlargements (aneurysms). Furthermore, flow visualization may help in treatment decisions. However, the most interesting parameter, the wall shear stress, is difficult to measure in vivo. This parameter can be provided by computational fluid dynamics. However, the numerical methods don’t visualize the results as does of the dye washout method — a method often used in flow studies. This experimental method simulates the cine angiograms acquired during contrast agent injection used in medicine. In this paper we present the dye washout visualization of CFD results and compare these results with the conventional dye washout experiments in the same aneurysm model under steady flow conditions.  相似文献   

12.
It is one of the basic concepts of Newtonian fluid dynamics that at low Reynolds number (Re) the Navier-Stokes equation is linear and flows are reversible. In microfluidic devices, where Re is essentially always low, this implies that flow resistance in microchannels is isotropic. Here we present a microfluidic rectifier: a microscopic channel of a special shape whose flow resistance is strongly anisotropic, differing by up to a factor of 2 for opposite flow directions. Its nonlinear operation at arbitrary small Re is due to non-Newtonian elastic properties of the working fluid, which is a 0.01% aqueous solution of a high molecular weight polymer. The rectifier works as a dynamic valve and may find applications in microfluidic pumps and other integrated devices.  相似文献   

13.
Here we present the results of experimental investigation of a cross flow around a circular cylinder mounted near the wall of a channel with rectangular cross section. The experiments were carried out in the range of Reynolds numbers corresponding to the transition to turbulence in a wake of the cylinder. Flow visualization and SIV-measurements of instantaneous velocity fields were carried out. Evolution of the flow pattern behind the cylinder and formation of the regular vortex structures were analyzed. It is shown that in the case of flow around the cylinder, there is no spiral motion of fluid from the side walls of the channel towards its symmetry plane, typical of the flow around a spanwise rib located on the channel wall. The laminar-turbulent transition in the wake of the cylinder is caused by the shear layer instability.  相似文献   

14.
何昱辰  刘向军 《物理学报》2015,64(19):196601-196601
分子动力学模拟是研究纳米流体的输运特性的重要手段, 但计算量庞大. 为研究能体现流动传热过程的大体系纳米流体的输运特性, 本文对基液采用连续介质假设, 将基液的势能拟合在纳米团簇的势能中, 大幅度减小了计算量, 使得大体系输运特性的模拟成为可能, 且模拟结果与多组实验结果吻合较好. 采用此方法模拟研究了速度梯度剪切对Cu-H2O纳米流体颗粒聚集过程和聚集特性的影响, 进而对Cu-H2O纳米流体在流动传热过程中的热导率和黏度进行了模拟计算, 定量揭示了宏观流动传热过程中不同的速度梯度、速度、平均温度和温度梯度对于Cu-H2O纳米流体热导率和黏度的影响.  相似文献   

15.
The linear stability of a fluid confined between two coaxial cylinders rotating independently with axial buoyancy induced flow is examined. Buoyancy is included through the Boussinesq approximation. The numerical investigation is restricted to radius ratio 0.5 at Prandtl number 0.709 with co-rotation situation. The outer rotating cylinder’s Couette flow Reynolds number is restricted to 200. Zeroth-order discontinuities are found in the critical surface, which are explained as the result of the competition between the centrifugal and axial buoyancy induced shear instability mechanisms. Due to the competition, the neutral stability curves develop islands of instability, which considerably lower the instability threshold. Specific and robust numerical methods to handle these geometrical complexities are developed.  相似文献   

16.
The development of a measurement system for the visualization, topological classification and quantitative analysis of complex flows in large-scale wind tunnel experiments is described. A new approach is sought whereby the topological features of the flow, e.g. stream lines, separation and reattachment regions, stagnation points and vortex lines are extracted directly and are preferably visualized in real-time in a virtual wind tunnel environment. The system is based on a stereo arrangement of two CCD cameras. A frame rate of 120 f/s allows measurements at high flow velocities. Helium filled soap bubbles are used as tracer particles. The present paper describes a simple camera calibration procedure for large measurement environments and examines the problem of fast and accurate reconstruction of path lines in three dimensions, which will enable true three-dimensional and time-resolved fluid flow visualization. Experimentally obtained visualization results for a free-stream flow, flow around a circular plate and flow over a delta wing are presented.  相似文献   

17.
The linear stability is studied of flows confined between two concentric cylinders, in which the radial temperature gradient and axial gravity are considered for an incompressible Newtonian fluid. Numerical method based on the Petrov-Galerkin scheme is developed to deal with the buoyancy term in momentum equations and an additional temperature perturbation equation. Computations of the neutral stability curves are performed for different rotation cases. It is found that the flow instability is influenced by both centrifugal and axial shear instabilities, and the two instability mechanisms interact with each other. The outer cylinder rotation plays dual roles of stabilizer and destabilizer under different rotating stages with the inner cylinder at rest. For the heat buoyancyinduced axial flow, spiral structures are found in the instability modes.  相似文献   

18.
利用共聚焦拉曼光谱技术,对人工心脏泵不同剪切应力下受到亚损伤的红细胞进行实验研究,验证拉曼光谱对红细胞亚损伤程度的评估能力,为血液损伤评价提供了一种新的思路。实验采集血红蛋白和红细胞的拉曼光谱标准谱图并进行对比分析,以确定红细胞谱图特征峰的归属。用血液剪切力试验平台对测试血样施加暴露时间为1 s,大小分别为0,50,100,150,200,250和300 pa的剪切力。利用共聚焦拉曼仪器,在10倍长焦物镜,532 nm激光光源波长,积分时间10 s,积分次数2次,2.5 mW功率下采集剪切应力作用后的红细胞拉曼谱图。通过归一化的方法对比红细胞的拉曼谱图变化,评估红细胞亚损伤的程度,运用曲线拟合方法对特征峰和剪切应力进行拟合,验证拉曼光谱对红细胞亚损伤的评估能力。对比血红蛋白和红细胞的拉曼光谱标准谱图发现,红细胞谱图能够反映血红蛋白的内部结构。且结果表明,拉曼光谱法可以用于区分不同剪切应力下亚损伤的红细胞,推断剪切应力可以透过细胞膜从而影响到其内部的血红蛋白结构。且随着剪切力的增大,1 376 cm-1位置左侧谱线呈现明显抬高趋势,1 549和1 604 cm-1位置的峰强增高,1 639 cm-1位置的氧浓度标记带ν10振动谱带减弱。其中1 549 cm-1位置的峰强为亚铁离子高自旋带,在不同剪切力的作用下,峰强差异表现最明显,与剪切应力呈明显的正向线性关系,拟合效果良好。拉曼光谱法检测样本处理简单、耗时短、操作简便、重现性好,且可以精确的检测到细胞内部结构的细微变化,可以评估红细胞的亚损伤程度,弥补了传统评价溶血的方法的不足,为人工心脏泵血液损伤评价提供了新的技术手段,拓宽了拉曼检测方法的应用领域。  相似文献   

19.
The flow-induced vibration characteristics of anisotropic laminated cylindrical shells partially or completely filled with liquid or subjected to a flowing fluid are studied in this work for two cases of circumferential wave number, the axisymmetric, where n=0 and the beam-like, where n=1. The shear deformation effects are taken into account in this theory; therefore, the equations of motion are determined with displacements and transverse shear as independent variables. The present method is a combination of finite element analysis and refined shell theory in which the displacement functions are derived from the exact solution of refined shell equations based on orthogonal curvilinear co-ordinates. Mass and stiffness matrices are determined by precise analytical integration. A finite element is defined for the liquid in cases of potential flow that yields three forces (inertial, centrifugal and Coriolis) of moving fluid. The mass, stiffness and damping matrices due to the fluid effect are obtained by an analytical integration of the fluid pressure over the liquid element. The available solution based on Sanders' theory can also be obtained from the present theory in the limiting case of infinite stiffness in transverse shear. The natural frequencies of isotropic and anisotropic cylindrical shells that are empty, partially or completely filled with liquid as well as subjected to a flowing fluid, are given. When these results are compared with corresponding results obtained using existing theories, very good agreement is obtained.  相似文献   

20.
Numerical simulation and visualization are performed to investigate the developing processes of flows between two concentric rotating cylinders. The length of the cylinders is finite and the end walls are fixed. Initially the fluid is at rest, and the inner cylinder suddenly begins to rotate. Various flow modes appear in this flow. Developments of the flow to these modes are examined and the physical explanation for the transient process is presented. The processes are classified into some types. At low Reynolds numbers, vortices begin to grow on end walls. When the Reynolds number is higher, the centrifugal instability brings first vortices around the mid-plane in the axial direction. Some final modes are established via an intermediate mode, and some other modes are attained after merging and vanishing of vortices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号