共查询到19条相似文献,搜索用时 46 毫秒
1.
误差为鞅差序列的部分线性模型中估计的强相合性 总被引:2,自引:0,他引:2
考虑回归模型:yi=xi β +g(ti)+σiei ,i=1,2,...,n,其中 σi=f(ui), (xi,ti,ui)是固定非随机设计点列,f(.), g(.)$ 是未知函数,β是待估参数,ei是随机误差且关于非降σ -代数列{Fi,i≥1} 为鞅差序列.对文献[1]给出的基于f(.)及g(.)的一类非参数估计的β的最小二乘估计βn和加权最小二乘估计βn,在适当条件下证明了它们的强相合性,推广了文献[6]在ei为iid情形下的结果. 相似文献
2.
考虑回归模型yi=xiβ g(ti) ei,i=1,2,…,n,其中(xi,ti)是固定非随机设计点列,g(.)是未知函数,β是待估参数,ei是随机误差且关于非降σ-代数列{Fi,i≥1}为鞅差序列,且满足E(e2n|Fn-1)-σ2=op(1),n→∞,其中0<2σ<∞为未知常数,本文基于g(.)的一类非参数估计的β的最小二乘估计■和2σ的估计量■,在适当条件下证明了其具有渐近正态性,从而推广了[1]在ei为iid情形下的结果. 相似文献
3.
4.
设半参数回归模型Y(n)i=β·x(n)i+g(t(n)i)+E(n)i,i=1,2,…,n,本文由最小二乘法和一般加权方法定义的β、g(t)的估计量βn,gn(t),在误差为鞅差序列下获得了βn,gn(t)的r(≥2)阶平均相合性. 相似文献
5.
考虑一类新的污染数据部分线性模型,当受污染后的因变量被随机右截断时,就截断分布已知的情形,利用所获得截断观测数据构造了模型中的参数分量,非参数分量及污染系数的估计量,并在适当的条件下,证明了这些估计量的强相合性. 相似文献
6.
误差为鞅差序列的半参数回归模型估计的相合性 总被引:1,自引:0,他引:1
设半参数回归摸型Y^(n)=β·χi(1) g(l1^(n)) 1 ^(n),i=1,2,….n,本由最小二乘法和一般加权方法定义的β、g(t)的怙计量βn,gn(t).在误差为鞅差序列下获得了βn gn(f)的r(≥2)阶平均相合性。 相似文献
7.
研究了线性EV模型:η_i=θ+βx_i+ε_i,ξ_i=x_i+δ_i,1≤i≤n.当误差(ε_i,δ_i)为鞅差序列情形时,讨论了未知参数β和θ的最小二乘估计的中偏差问题. 相似文献
8.
鞅差误差序列下半参数EV回归模型的近邻估计 总被引:1,自引:1,他引:0
本文研究了误差为鞅差序列的条件下的一维半参数EV回归模型.利用两步估计的方法构造了参数分量和非参数分量的近邻估计,并且分别证明了估计量的L2相合性和强相合性,从而推广了在普通半参数回归模型已有的相关结论. 相似文献
9.
《数学的实践与认识》2017,(19)
研究了以NSD序列(negatively superadditive dependent)为误差的广义线性模型,得到了未知参数的M估计.在较弱的条件下,利用指数不等式、NSD序列加权和的强收敛性和Borel-Cantelli引理等证明了未知参数M估计的强相合性.此结果推广了独立误差和NSD误差的线性模型的相应结果. 相似文献
10.
本文研究解释变量为(x,T)的部分线性变量含误差模型,其中x为固定变量,T为随机变量.文中导出了未知参数的两阶段估计,证明了估计的强相合性,并且还证明了未知函数的核估计量是强一致相合的. 相似文献
11.
对于非参数回归模型Yni=g(xni)+εni,1in,用一般非参数方法,定义了未知函数g(.)的估计量gn(x),当误差序列{εni,1in}为一弱平稳线性过程序列时,在一定条件下,获得了估计量gn(x)的一致强相合性. 相似文献
12.
Qi-Hua Wang 《Annals of the Institute of Statistical Mathematics》2003,55(1):21-39
In this paper, an estimation theory in partial linear model is developed when there is measurement error in the response and
when validation data are available. A semiparametric method with the primary data is used to define two estimators for both
the regression parameter and the nonparametric part using the least squares criterion with the help of validation data. The
proposed estimators of the parameter are proved to be strongly consistent and asymptotically normaal, and the estimators of
the nonparametric part are also proved to be strongly consistent and weakly consistent with an optimal convergent rate. Then,
the two estimators of the parameter are compared based on their empirical performances.
Supported by NNSF of China (No. 10231030, No. 10241001) and a grant to the author for his excellent Ph.D. dissertation work
in China. 相似文献
13.
14.
15.
A recent theorem of T. L. Hai, H. Robbins, and C. Z. Wei (J. Multivariate Anal.9 (1979), 343–362) is extended to a more general form which unifies previous results in the literature on the strong consistency of least squares estimates in multiple regression models with nonrandom regressors. In particular the issue of strong consistency of the least squares estimate in the Gauss-Markov model, in the i.i.d. model with infinite second moment, and in general time series models is examined. In this connection, some basic properties of convergence systems are also obtained and are applied to the strong consistency problem. 相似文献
16.
Strong consistency of maximum quasi-likelihood estimates in generalized linear models 总被引:2,自引:0,他引:2
YIN Changming & ZHAO Lincheng Department of Statistics Finance University of Science Technology of China Hefei China 《中国科学A辑(英文版)》2005,48(8):1009-1014
In a generalized linear model with q×1 responses, bounded and fixed p×q regressors zi and general link function, under the most general assumption on the minimum eigenvalue of ∑in=1 ZiZi', the moment condition on responses as weak as possible and other mild regular conditions, we prove that with probability one, the quasi-likelihood equation has a solution βn for all large sample size n, which converges to the true regression parameter β0. This result is an essential improvement over the relevant results in literature. 相似文献
17.
The strong consistency of least squares estimates in multiple regression models is established under minimal assumptions on the design and weak dependence and moment restrictions on the errors. 相似文献
18.
Rate of strong consistency of quasi maximum likelihood estimate in generalized linear models 总被引:7,自引:0,他引:7
YUE Li & CHEN Xiru School of Mathematics Statistics Wuhan University Wuhan China Graduate School Chinese Academy of Sciences Beijing China 《中国科学A辑(英文版)》2004,47(6):882-893
Under the assumption that in the generalized linear model (GLM) the expectation of the response variable has a correct specification and some other smooth conditions, it is shown that with probability one the quasi-likelihood equation for the GLM has a solution when the sample size n is sufficiently large. The rate of this solution tending to the true value is determined. In an important special case, this rate is the same as specified in the LIL for iid partial sums and thus cannot be improved anymore. 相似文献
19.
CUI HengjianDepartment of Mathematics Statistical Data Analysis Laboratory Beijing Normal University Beijing China 《中国科学A辑(英文版)》2004,47(1):144-159
The aim of this work is to construct the parameter estimators in the partial linear errors-in-variables (EV) models and explore their asymptotic properties. Unlike other related references, the assumption of known error covariance matrix is removed when the sample can be repeatedly drawn at each designed point from the model. The estimators of interested regression parameters, and the model error variance, as well as the non-parametric function, are constructed. Under some regular conditions, all of the estimators prove strongly consistent. Meanwhile, the asymptotic normality for the estimator of regression parameter is also presented. A simulation study is reported to illustrate our asymptotic results. 相似文献