首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The results of spin-polarized MSX calculations show that the ground state of the CuO 4 6– cluster is essentially non-magnetic in spite of odd number of electrons in the system for short Cu–O distances (1.90 Å) as found in the highT c superconductors. This arises due to the fact that the unpaired electron resides in a molecular orbital with primarily oxygen 3s character. The stability of this molecular orbital is found to be sensitive to the cluster geometry and thus, increase in Cu–O distance (as well as other changes affecting oxygen-oxygen distance) tend to favour a magnetic state. From these calculations we have also estimated the Coulomb correlation strength within the Cu 3d to be about 5.3 eV.  相似文献   

2.
The hybrid density functional theory B3LYP with basis sets 6-31G* has been used to study on the equilibrium geometries and electronic structures of possible isomers of Si3N4 clusters. 24 possible isomers are obtained. The most stable isomer of Si3N4 is a 3D structure with 7 Si-N bonds and 2 N-N bonds that could beformed by 3 quadrangles. The bond properties of the most stable isomer was analyzed by using natural bond orbital method (NBO), the results suggest that the charges on Si and N atoms in Si-N bonds are quite large, so theinteraction of N-Si atoms in Si3N4 cluster is of strongly electric interaction. The primary IR and Raman vibrational frequency located at 1033.40 cm^-1, 473.63 cm^-1 respectively. The polarizabilities and hyperpolarizabilities of the most stable isomer are also analyzed.  相似文献   

3.
Within the effective-mass approximation,we investigate the electronic structure of hexagonal quantum-disc clusters using the finite element method.With an increasing amount of quantum dots in the cluster,the electronic energy levels quickly expand into mini-bands.each consisting of discrete,unevenly distributed energy levels,The corresponding electronic eigenfunctions are linear combinations of the electron orbits in each quantum dot.The spatial symmetry of the combination is the same as the electronic eigenfunctioin of a single quantum dot.  相似文献   

4.
The results of optimizing the spatial structure and calculated electronic spectra of the TaGe n ? anion clusters (n = 8–17) have been presented. The calculations have been performed in terms of the density functional theory. The most probable spatial structures of clusters detected in the experiment have been determined by comparing the calculated and available experimental data.  相似文献   

5.
The polarized spectra of the full set of optical functions of GaS, GaSe, InSe, GaTe, InS, and TlSe crystals are determined in a wide range of fundamental-absorption energies. The ?2 and -Im??1 spectra are decomposed into elementary components. The main parameters of the components were determined and the main features of the spectra and transition components are established. The results obtained are explained on the basis of the theoretical band calculations.  相似文献   

6.
We have theoretically investigated the subband structure of single Si δ -doped GaAs inserted into a quantum well at T =  0 K. We will discuss the influence of the δ -doping concentration, the δ -layer thickness and diffusion of donor impurities. The spread of the impurities are taken into account in two different models: (i) a uniform distribution and (ii) a nonuniform distribution. In this paper, the nonuniform distribution is different from the Gaussian distribution use of other authors. The electronic structures have been calculated by solving the Schrödinger and Poisson equations self-consistently. We thus find the confining potential, the subband energies and their eigen envelope functions, the subband occupations and Fermi energy.  相似文献   

7.
We have investigated the electronic structure and the magnetic properties of Co–Si alloy clusters using ab initio spin-polarized density functional calculations. The possible CoSi2, CoSi, and Co2Si phase clusters with oblique hexagon prism, icosahedron, and cuboctahedron structures are introduced. The CoSi phase cluster with icosahedron structure has the largest binding energy and amount of charge transfer. We found that HOMO-LUMO gap, magnetic moment, and spin polarization for the Co–Si alloy clusters with icosahedron structure increase with Co concentration. The Si atoms in the CoSi phase with icosahedron structure have negative magnetic moment.  相似文献   

8.
The electronic structure of a bare Rh(553) surface and of a Ni-decorated Rh(553) surface has been investigated by angle-resolved UV photoelectron spectroscopy and density functional theory calculations. The self-assembly of Ni adatoms leads to the decoration of the steps of the Rh(553) surface with monoatomic Ni rows under suitable kinetic conditions, thus forming a regular array of pseudomorphic bimetallic Ni–Rh nanowires. The electronic structure of the clean Rh(553) surface has been compared to the one of the flat Rh(111) surface, and additional surface states localized at the step edges due to the lower coordination of the step atoms have been detected. The Ni wires are weakly hybridized with the Rh substrate states and are characterized by only weakly dispersing states. This leads to a strong narrowing of the d-band, which is argued to be the origin of the observed high chemical reactivity of the Ni–Rh nanowires.  相似文献   

9.
M.H. Cohen  V. Heine 《物理学进展》2013,62(28):395-434
In the monovalent metals the electronic band structure is strongly affected by the size of the band gap E s-E p at the Brillouin zone faces, a large gap implying a large distortion of the Fermi surface. Here E s and E p are the energies of the purely s-like and p-like states on the zone faces. We have made crude estimates of E s-E p for the alkali and noble metals, in terms of the s-p excitation energy Δsp of the free atoms. These suggest a single model which correlates most of the experimental information about the band structures of these metals. In particular the Fermi surface of lithium appears to make considerable contact with the zone faces. In the α-phase alloys of the noble metals, the solute always has a larger value of Δsp than the solvent, which raises the energy E p relative to E s. The Fermi surface becomes more nearly spherical in copper alloys than in copper, since E p<E s, whereas it distorts further in the gold alloys (E p>E s). This accounts for many Knight shift, electronic specific heat, magnetic susceptibility and other data on these alloys. Furthermore it provides the extension of Jones' explanation of the Hume-Rothery rule demanded by the non-spherical Fermi surface in pure copper and gold.  相似文献   

10.
Russian Physics Journal - Using the methods of dark-field electron microscopy analysis, energy-dispersive X-ray microanalysis, hardness measurements and scratch testing, the variations of elemental...  相似文献   

11.
12.
Using a model which considers the localized and itinerant nature of the 3d electrons, and short-range order correlations, we obtain CoxFe1−x binary magnetic alloys electronic structure for different values of concentration x for subsequently finding the magnetic moment behaviour of each of the alloy components as function of the Co concentration x. In this way we are able to obtain results that agree with experiments of polarized neutrons diffraction.  相似文献   

13.
Al–1wt.%Si alloy samples in the solid solution state were irradiated with doses of gamma rays up to 1.75 MGy for 2 h in the temperature range from 423 to 553 K. Induced variations in structure, mechanical and electrical properties were traced by suitable techniques. Observed changes in the measured parameters, internal friction Q ?1, thermal diffusivity D th, dynamic elastic modulus Y and resistivity, ρ, were explained in terms of the role and mode of interaction of lattice defects in irradiated and thermally treated samples. Composition inhomogeneity and variations in mass distribution in the matrix were also considered. The structure identification of the samples was carried out by using conventional X-ray diffraction techniques and transmission electron microscopy micrographs.  相似文献   

14.
We have studied the electrical and optical properties of Cu–Al–O films deposited on silicon and quartz substrates by using radio frequency (RF) magnetron sputtering method under varied oxygen partial pressure PO. The results indicate that PO plays a critical role in the final phase constitution and microstructure of the films, and thus affects the electrical resistivity and optical transmittance significantly. The electrical resistivity increases with the increase of PO from 2.4 × 10?4 mbar to 7.5 × 10?4 mbar and afterwards it decreases with further increasing PO up to 1.7 × 10?3 mbar. The optical transmittance in visible region increases with the increase of PO and obtains the maximum of 65% when PO is 1.7 × 10?3 mbar. The corresponding direct band gap is 3.45 eV.  相似文献   

15.
Si C monocrystal substrates are implanted by Pd ions with different ion-beam energies and fluences,and the effects of Pd ion implantation on wettability of Si/Si C and Al–12 Si/Si C systems are investigated by the sessile drop technique.The decreases of contact angles of the two systems are disclosed after the ion implantation,which can be attributed to the increase of surface energy(σ_(SV)) of Si C substrate derived from high concentration of defects induced by the ionimplantation and to the decrease of solid–liquid surface energy(σ_(SL)) resulting from the increasing interfacial interactions.This study can provide guidance in improving the wettability of metals on Si C and the electronic packaging process of Si C substrate.  相似文献   

16.
17.
For the uniform distribution we have theoretically investigated the influence of donor thickness on two coupled Si -doped GaAs structure, at T=0 K. Electronic structure have been calculated by solving the Schrödinger and Poisson equations self-consistently. We thus find the confining potential, the electronic density, the subband energies and their eigen envelope functions, the subband occupations and Fermi energy. From the self-consistent calculation, we have seen that the effective potential profile and the electronic density of two coupled Si -doped GaAs structure are sensitive to the donor thickness while the subband energies and the subband occupations are not sensitive to the donor thickness . PACS 73.20.Dx; 73.20.At; 73.90.+f  相似文献   

18.
By using angle resolved photoemission spectroscopy, we investigate the electronic structures of Pt-skin layer of Pt–Co and Pt–Ni alloys with CO molecules on the surface. Measured Fermi surface maps and band dispersions reflect the signatures of chemical bonding between Pt-skin layer and CO molecules. Furthermore, the degree of chemical bonding strength of CO molecules, estimated from the energy shift of the participating bands, is found to be reduced on both Pt bimetallic alloys. Our results show how the surface band structure of Pt bimetallic alloys is modified with molecular orbitals of CO molecules on the surface, revealing the important role of the electronic structure in the determination of chemical properties of bimetallic alloys.  相似文献   

19.
The formation of unusual chain structures and clusters of particles with the mixed dipole–quadrupole interaction has been found in smectic nanofilms. Unlike topological dipoles and quadrupoles, the interaction between which leads to the formation of structures with finite interparticle distances, the particles with the mixed interaction touch each other and form stable chains and two-dimensional clusters. The orientation of particles in chains is intermediate between dipole and quadrupole chains. The variation of the interparticle distance and orientation of chains is explained qualitatively on the basis of the calculation of the с-director (field lines) near particles and the mutual arrangement of particles providing the minimum distortion of field lines.  相似文献   

20.
Quasicrystalline coatings prepared under various thermal conditions of spraying have been studied. Initial quasicrystalline powders with dispersion of 10–50 μm were prepared in a low-pressure arc discharge plasma. The coatings have been sprayed on copper rings using a swinging plasmatron. It is found that the increase in the quenching rate of melt droplets increases the chemical homogeneity and leads to formation of nanostructured formations. The precipitation of nanostructured grains (d < 100 nm) in the sprayed alloy leads to an increase in the mechanical characteristics (hardness, deformation, and ductility) and can be considered as an additional factor of hardening of the material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号