首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Free-space smart-pixel optical interconnect architectures promise to relieve the interconnect bottleneck in high-speed parallel computers and switching systems. One of the most promising output devices that has been advanced for use in these systems is the asymmetric Fabry-Perot modulator, or AFPM, which offers high on-off contrast, low insertion loss, and low operating voltage swing, among other advantages. In this paper we summarize our work on optimizing the AFPM for high-speed operation, including analysis of the material structure design considerations, fabrication of small (16×20 m) devices, and high-speed electrical and optical characterization of the finished modulators. We conclude that at relatively high incident optical intensities the modulators' speed appears to be limited by transit effects to about 18 GHz, but that at lower optical intensities their frequency response outstrips that of our 20 GHz measurement apparatus — that is, these AFPMs are still capable of large signal modulation (20 dB contrast, 1.5 dB insertion loss) at low AC voltage swings (±3 V) for operating frequencies up to 20 GHz. We presume that further investigation will prove them to be RC-limited in this low-intensity regime to speeds of about 35 GHz.  相似文献   

2.
Thin films based on two different metal-organic systems are developed by MAPLE and their nonlinear optical applications are explored. A complex of o,o′-dihydroxy azobenzene with Cu2+ cation is found to organize as a non-central symmetric crystallite. A simple protocol is developed for the in situ fabrication of highly monodisperse copper-complex nanoparticles in a polymer film matrix of polyacrylic acid. The thin films were deposited on quartz substrates by MAPLE (matrix assisted pulsed laser evaporation) using a Nd:YAG laser working at 355 nm. Atomic force microscopy (AFM), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and optical second harmonic generation (SHG) were performed on the samples. The optical limiting capability of the nanoparticle-embedded polymer film is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号