首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The activity coefficients of K3[Co(CN)6], Mg3[Co(CN)6]2, and Ca3[Co(CN)6]2,are examined. The results highlight close similarity with the correspondinghexacyanoferrate (III) salts. On dilution, K3[Co(CN)6], like K3[Fe(CN)6], approachesthe limiting law from the upper side, while Mg3[Co(CN)6]2 and Ca3[Co(CN)6]2tend to the limiting law from the opposite side, like Mg3[Fe(CN)6]2,Ca3[Fe(CN)6]2, Sr3[Fe(CN)6]2, and Ba3[Fe(CN)6]2. Both kinds of behavior agreewith theory for a model of hard spheres bearing electric charges +1 and –3 or+2 and –3, respectively. The paramater values of the Pitzer equation for activityand osmotic coefficients are reported.  相似文献   

2.
Electronic absorption spectra of aqueous solutions of the clusters K6[Mo6Q8(CN)6] and K7[Mo6Q8(CN)6] (Q = S, Se) were studied. The electronic structures of the [Mo6Q8(CN)6]6– and [Mo6Q8(CN)6]7– cluster anions were calculated by the DFT method. The absorption spectra observed agree with the results of calculation in the framework of the electron-dipole transition model.  相似文献   

3.
Double metal cyanide (DMC) complexes based on Zn3[Fe(CN)6]2 were synthesized using different molar ratios of ZnCl2 to K3[Fe(CN)6] and special complexing agents. IR spectroscopy, electron spectroscopy for chemical analysis, X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and other analytical techniques were employed to characterize these catalysts. The morphology and structure of these DMC catalysts were attributed to the different complexing agents as well as to the different molar ratios of ZnCl2 to K3[Fe(CN)6]. In addition, the catalytic activity was strongly correlated with the morphology and noncrystalline content of DMC catalysts. High-activity catalysts could be prepared by controlling the structure of DMC catalysts by incorporating complexing agents. The active species of DMC catalysts for ring-opening polymerization are Zn2+, [Fe(CN)6]3–, Cl, and the compound of their ligands.  相似文献   

4.
Summary Ligand-field (LF) photolysis of aqueous alkaline solutions of K4[M(CN)8] (M = Mo or W) containing KCN produces [MO(CN)5]3– species. NaCs2]MO(CN)5] was isolated and characterised by u.v.-vis., i.r. and Raman spectroscopy. In addition, the reactions of [MO(OH)(CN)4]3– with free CN are described and the relations between octa-, penta- and tetra-cyanocomplexes are summarised.  相似文献   

5.
Zusammenfassung Es wurden die elektrochemischen Eigenschaften des Redox-Systems K4[Fe(CN)6]-K3[Fe(CN)6] in Ameisensäure-Wasser-, Essigsäure-Wasser-, Propionsäure-Wasser- und n-Buttersäure-Wasser-Gemischen untersucht. Die Veränderungen des Redoxpotentials, der Leitfähigkeit und der Dielektrizitäts-konstante wurden studiert.Es wurde bewiesen, daß die Potentialveränderung des Redox-Systems bei kleiner Säurekonzentration (n s<0,6–0,7) vor allem durch die Wasserstoffionen-Konzentration der Lösung bestimmt wird. Mit der Zunahme der H+-Konzentration nimmt die Aktivität des [Fe(CN)6]4– in größerem Maße ab als die des [Fe(CN)6]3–.Bei großer Säurekonzentration beeinflußt dagegen hauptsächlich die Anionsolvatation durch das Lösungsmittelgemisch die Verschiebung des Redoxpotentials. Die Solvatation ruft eine Strukturveränderung hervor, wodurch die Elektronen-population der Lösungsmittelmoleküle in der Nähe der Cyanoferrat-Ionen abnimmt, die Elektronen-Acceptor-Wirkung des Lösungsmittels wächst. Dieser Prozeß bewirkt in bekannter Weise die Zunahme des Redoxpotentials.
The electrochemical behaviour of redox systems in mixed solvents, II.: TheK 4[Fe(CN) 6]-K 3[Fe(CN) 6] system in fatty acid-water mixtures
The electrochemical behaviour of the K4[Fe(CN)6]-K3[Fe(CN)6] system has been investigated in mixtures of water with formic, acetic, propionic and n-butyric acid, resp. The change of the redox potential, the conductivity and the dielectric constant has been studied. It has been proved that the change of the redox potential of the system at low acid concentration (n s<0.6–0.7) is determined by the H+ concentration. Increasing the H+ concentration, the activity of the [Fe(CN)6]4– decreases in a higher extent than the activity of [Fe(CN)6]3–.On the other hand, at high acid concentration the shift in the redox potential is influenced first of all by the anion solvating effect of the solvent. The solvation causes such a change in the structure, that the electron population of the solvent molecules around the [Fe(CN)6]4– ions decreases, the acceptor strength of the solvent increases. It is well known that this process causes an increase in the redox potential.


Mit 7 Abbildungen  相似文献   

6.
Reaction of K3[Fe(CN)6] with [Cu(tn)2](ClO4)2 (tn=1,3-diaminopropane) leads to a novel mixed cyano and tn bridged three-dimensional (3D) bimetallic assembly (1), in which each [Fe(CN)6]4− anion connects six copper(II) cations via six CN groups, whereas each copper(II) cation is linked to three [Fe(CN)6]4− ions and two other copper(II) ions through Cu–NC–Fe and Cu–tn–Cu linkages, respectively. Magnetic studies reveal weak antiferromagnetic interactions between the nearest CuII (S=1/2) ions through the diamagnetic [Fe(CN)6]4− anion.  相似文献   

7.
Brylev  K. A.  Virovets  A. V.  Naumov  N. G.  Mironov  Yu. V.  Fenske  D.  Fedorov  V. E. 《Russian Chemical Bulletin》2001,50(7):1140-1143
The new octahedral molybdenum thiocyanide cluster complex K7[Mo6S8(CN)6]·8H2O was synthesized by excision of the cluster core (the reaction of ZnMo6S8 with a melt of KCN). The structure of the complex was established by X-ray diffraction analysis. The reaction of Mo6Se8 with a KCN—KSCN mixture afforded the mixed-ligand cluster anions [Mo6(Se,S)8(CN)6]7–. The salt of composition K1.5Cs5.5[Mo6Se6.8S1.2(CN)6]·8H2O was obtained. The complexes are isostructural to each other and to the selenium analog described previously. The magnetic properties and the electronic and IR spectra were measured and discussed.  相似文献   

8.
Zusammenfassung Das elektrochemische Verhalten des Redoxsystems K4[Fe(CN)6]/K3[Fe(CN)6] wurde in Methanol-Wasser-, Äthanol-Wasser-, Dioxan-Wasser-, Tetrahydrofuran-Wasser-und Aceton-Wasser-Gemischen in Abhängigkeit von der Zusammensetzung des Lösungsmittels untersucht.Die Veränderungen des Redoxpotentials, der Leitfähigkeit und der Dielektrizitätskonstante wurden studiert, die Absorptionsspektra sowohl der einzelnen Komponenten als auch des Redoxsystems in sichtbaren und UV-Gebiet aufgenommen und ihre zeitliche Stabilität auch in Methanolhaltigen Lösungen festgestellt.Es wurde gezeigt, daß die Veränderung des Redoxpotentials — vor allem — von den, die Solvatation beeinflussenden Koordinationseigenschafte der Lösungsmittel verursacht wird. In den Lösungsmittelgemischen verändern sich die Dissoziationsverhältnisse von K4[Fe(CN)6] bzw. K3[Fe(CN)6] hauptsächlich infolge der Veränderung der Dielektrizitätskonstanten. Dieser Umstand wirkt indirekt auf das Redoxpotential des Systems.Die verschiedenen Lösungsmittelgemische rufen aber auch unmittelbar durch ihre, die Elektronendichte beeinflussenden Donor- und Acceptor-Eigenschaften die Veränderung des Redoxpotentials hervor.
The electrochemical behaviour of redox systems in mixed solvents, I: The K4[Fe(CN)6]—K3[Fe(CN)6] system in organic solvent-water mixtures
The electrochemical behaviour of the K4[Fe(CN)6]—K3[Fe(CN)6] system has been investigated in methanol-water, ethanol-water, dioxane-water, tetrahydrofuran-water and acetone-water mixtures, as a function of the composition of the solvents.Changes in redox potential, conductivity, and dielectric constants have been investigated. In addition to the above the absorption spectra of the individual components and redox systems have been examined in the ultraviolet and visible range. The stabilities of the spectra have been established as a function of time, also in solvents containing methanol.It has been proved that the change of redox potential is caused-first of all—by the coordination behaviour of the solvent, affecting solvation. In the mixtures of solvents the dissociation properties of K4[Fe(CN)6] and K3[Fe(CN)6] are changed in consequence of the change in dielectric constants. The redox potential of the system is indirectly affected by this phenomenon.The change of redox potential, however, amy also be directly caused by the different mixtures of solvents, owing to their donor-acceptor properties affecting electron density.


Mit 9 Abbildungen

Herrn Prof. Dr.H. Nowotny gewidmet.  相似文献   

9.
Reaction of either K3[Fe(CN)6] or K4[Fe(CN)6] with a macrocyclic CuII complex, [Cu(teta)](ClO4)2 (teta = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacylotetradecane), in aqueous solution gave the same product as shown by spectroscopic and physicochemical characterisation. The crystal structure of the complex shows that it is a one-dimensional linear chain type heterobinuclear FeIII–CuII polymer. The unit is composed of a [Cu(teta)(H2O)2]2+ cationic complex, a FeIII–CuII alternate linear chain unit, a ClO 4 ion and four water molecules. The Cu atom is coordinated in a distorted octahedral arrangement by four nitrogen atoms from one teta ligand and two nitrogen atoms of the bridging cyanide groups. The Cu—N bond distances involving the cyanide bridges, 2.522(7) and 2.608(7)Å, respectively, indicate weak antiferromagnetic interactions between the FeIII and CuII atoms.  相似文献   

10.
Kou  Hui-Zhong  Gao  Dong-Zhao  Bu  Wie-Ming  Fan  Yu-Guo  Liao  Dai-Zheng  Cheng  Peng  Jiang  Zong-Hui  Yan  Shi-Ping  Wang  Geng-Lin  Li  Tian-Jian  Tang  Jin-Kui 《Transition Metal Chemistry》2001,26(4-5):457-460
Two CrIII–FeIII complexes, K2[Cr(salen)(H2O)][Fe(CN)6]·H2O (1) and [trans-Cr(tn)2Cl2]3[Fe(CN)6]·6H2O (2), have been prepared. Crystal structure determination shows that complex (2) possesses an ionic salt structure. General physical measurements and magnetic studies indicate that (1) assumes a cyanide-bridged dinuclear structure, and that the CrIII–FeIII magnetic coupling through the cyanide bridge is antiferromagnetic, which can be rationalized by the overlap of magnetic orbitals of the same symmetry.  相似文献   

11.
The relative mean activity coefficients of the M3[Fe(CN)6]2 salts, M=Mg, Ca, Sr, Ba, are measured down to about 5×10–6 mol-kg–1 using the liquid membrane cell method. In the dilute region these salts display negative instead of positive deviations from the limiting law, contrary to Debye-Hückel's theory predictions. An indirect method based on auxiliary emf measurements in MCl2, K3Fe(CN)6 and KCl, rather than a theory-assisted direct extrapolation to zero of the relative activity coefficients, is used to identify the actual values of the activity coefficients. The data are compared with Mayer's theory, ion-pair theory and numerical integration of the Poisson-Boltzmann equation. Best-fit coefficients of Pitzer's equation which meet the activity coefficients of the M3[Fe(CN)6]2 salts to be reproduced, are reported.  相似文献   

12.
Zusammenfassung Durch Ersetzung des Cadmiums im Clathrat Cden[Ni(CN)4]·2C6H6 wurden drei Verbindungen des TypsM(en) m[Ni(CN)4nC6H6 (M 2+=Ni, Cu, Zn;m=2–3;n=0.14–0.28) hergestellt und charakterisiert.
Synthesis of ethylendiamine-(metal II)-tetracyanoniccolate dibenzene clathrate compounds
Replacing cadmium ion in Cden[Ni(CN)4]·2C6H6 clathrate compound three compounds ofM(en) m[Ni(CN)4nC6H6 type (M 2+=Ni, Cu, Zn;m=2–3;n=0.14–0.28) were prepared and characterized.
  相似文献   

13.
Shen  Zhen  Zuo  Jing-Lin  Shi  Fa-Nian  Xu  Yan  Song  You  You  Xiao-Zeng  Raj  S. Shanmuga Sundara  Fun  Hoong-Kun  Zhou  Zhong-Yuan  Che  Chi-Ming 《Transition Metal Chemistry》2001,26(3):345-350
Two bimetallic assemblies, K2[NiII(cyclam)]3[FeII(CN)6]2 · 12H2O (1) and [NiII(cyclam)]3[FeIII(CN)6]2 · 16H2O (2) (cyclam = 1,4,8,11-tetraazacyclotetradecane), were obtained by reaction of K4[Fe(CN)6] and [Ni(cyclam)](ClO4)2 in aqueous media at different temperatures. Their crystals were structurally determined and magnetic properties were studied. Both of the compounds have honeycomb-layered structures, which are formed by Fe6Ni6 units linked through the cyanide bridges. Structure (1) consists of polyanions containing NiII–NC–FeII linkages and K+ cations, while structure (2) is a two-dimensional neutral layer containing NiII–NC–FeIII linkages. The magnetic properties of (1) and (2) have been investigated in the 5–300 K range. Compound (1) exhibits a weak antiferromagnetic interaction with Weiss constant = –0.35 K; compound (2) shows ferromagnetic intralayer and antiferromagnetic interlayer interactions.  相似文献   

14.
A simple method to prepare57Fe enriched K4[Fe(CN)6] and K3[Fe(CN)6] is described. The yields of the products are much better than those reported in the literature so far. The enrichment is essential for57Fe Mössbauer investigation in a variety of Prussiate type complexes and other inorganic compounds which are conveniently prepared from K4[Fe(CN)6] and K3[Fe(CN)6]. K4[Fe(CN)6] was obtained by reacting freshly prepared Fe(OH)3 with glacial acetic acid and treating with iron acetate in boiling aqueous solution of KCN. The novel feature of the procedure to obtain K3[Fe(CN)6] is that the oxidation of K4[Fe(CN)6] has been carried out in the solid state by passing chlorine gas over the powdered specimen. K3[Fe(CN)6] was crystallised from alkaline solution of this oxidised powder. The compounds were characterised by Mössbauer spectroscopy.  相似文献   

15.
The reaction of alkali metal hexacyanoferrate(II/III) with (CH2)6N4 (hexamethylenetetramine, abbreviated HMT) in an acidic medium yielded crystalline compounds of stoichiometries HK2[Fe111(CN)6]·2HMT·4H2O, H2K2[Fe11(CN)6]·2HMT·4H2O, and HNa2[Fe111(CN)6]· 2HMT·5H2O. Their crystal structures are based on a packing of three molecular components: neutral and/orprotonated HMT, hexacyanoferrate, and an alkali metal ion-water cluster. The resulting three-dimensional supramolecular framework is constructed from the coordination of the alkali metal ion by aqua ligands as well as [Fe(CN)6]{n–} and HMT units, and further stabilization is achieved by hydrogen bonding between water molecules and the noncoordinated nitrogen atoms of HMT and hexacyanoferrate.  相似文献   

16.
The electrochemical behavior of K3[Fe(CN)6] was studied on an ITO electrode that was coated with β‐cyclodextrin (CD) modified multi‐walled carbon nanotubes (MWNTs) and with carboxyl modified multi‐walled carbon nanotubes (MWNT‐COOHs). MWNT‐COOHs showed an excellent electrocatalytic effect on the redox of K3[Fe(CN)6] while MWNT‐CDs had a subdued effect on the electrochemical response of K3[Fe(CN)6]. It is probably due to mismatching between K3[Fe(CN)6] and cyclodextrin, which hampers the contact of K3[Fe(CN)6] with carbon nanotubes. Moreover, the electrochemical behavior of K3[Fe(CN)6] on the MWNT‐COOHs coated ITO electrode at various scan rates also was measured. The results indicated that both potential difference between redox peaks and peak current of K3[Fe(CN)6] increased with increasing scan rate. A good linearity of peak current versus scan rate was observed.  相似文献   

17.
Summary The new complex double saltscw-[Co(NH3)(en)2(H2O)]2 [M(CN)4]3 (en = ethylenediamine; M = Ni, Pd or Pt),cis-[Co(NH3(en)2(H2O)]2[FeNO(CN)5]3 andcis-[Co(NH3)(en)2(H2O)][Co(CN)6] have been synthesized and by anation in the solid state the corresponding new dinuclear complexes with a cyano bridgecis- ortrans-[(NH3)(en)2Co-NC-M(CN)3]2 [M(CN)4] (M = Ni, Pd or Pt);cis-, trans-[(NH3)(en)2Co-NC-FeNO(CN)4]2[FeNO(CN)5] andcis-[(NH3)(en)2Co-NC-Co(CN)5 have been prepared. The complexes have been characterized by chemical analysis, t.g. measurements, and by i.r. and electronic spectroscopy. With [Ni(CN)4][2– and [Co(CN)in]6 3– only thecis-isomer is produced; with [Pd(CN)4]2–, [Pt(CN)4]2– and [FeNO(CN)5]2– thetrans- isomer is the dominant species. The dinuclear complex derived from [Pt(CN)4]2– shows strong Pt-Pt interactions both in the solid state and in solution.  相似文献   

18.
The synthesis, spectral properties and crystal structures of Cs2[W(bpy)(CN)6]·2H2O and (AsPh4)2[W(bpy)(CN)6]·3.5H2O are described. The anions of both salts show distorted antiprismatic geometry with very similar bond lengths and angles. The structure of the [W(bpy)(CN)6]2– anion is independent of the type of cation, in contrast to the octacyanotungstate(IV).  相似文献   

19.
Kinetic features of the reactions of K4[Fe(CN)6] with radicals initiated by water-soluble azo-initiator 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) at 37 °C were studied using the potentiometric method. Potassium ferrocyanide was shown to be a radical acceptor, whereas K3[Fe(CN)6] formed by the oxidation with the radicals in combination with K4[Fe(CN)6] is an electrochemical system, the study of which makes it possible to determine kinetic characteristics of radical reactions. The rate constants for the reactions of peroxide radicals RO2 · with K4[Fe(CN)6] were calculated.  相似文献   

20.
Electrical conductivities of dilute aqueous solutions for unsymmetrical electrolytes of the type 3:1, 1:3, 3:2, 4:1, 1:4, 4:2, 2:4, 1:5 1:6 and 6:1 are reexamined in the framework of the Quint-Viallard conductivity equations, in order to obtain a uniform representation of their conductivities. The molar and equivalent limiting conductances were evaluated with ion association constants, which were treated as adjustable parameters. The derived values were compared with corresponding results from the literature. The following electrolytes are considered: rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er) halides, perchlorides, nitrates and sulfates; hexamminecobalt and tris-ethylenediaminecobalt halides, perchlorides, nitrates and sulfates; [Ni2(trien)3]Cl4, [Pt(pn)3]Cl4, [Co2(trien)3]Cl6; cyanides K3[Fe(CN)6], K3[Co(CN)6], M3[W(CN)8] with M=Na, K, Rb, Cs; Ca2[Fe(CN)6], K4[Fe(CN)6], K4[Mo(CN)8], K4[W(CN)8], K4[Ru(CN)8], (Me4N)4[Fe(CN)6], (Pr4N)4[Fe(CN)6], K4[Mo(CN)8], (Me4N)4[Mo(CN)8], (Et4N)4[Mo(CN)8] and (Pr4N)4[Mo(CN)8]; phosphates Na4P2O7, Na4P4O12, Na5P3O10, Na6P6O18 and (Me4N)4P4O12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号