首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work we studied and compared the physicochemical properties of the catanionic mixtures cetyltrimethyl-ammonium bromide–sodium dodecanoate, cetyltrimethyl-ammonium bromide–sodium perfluorodacanoate, octyltrimethylammonium bromide–sodium perfluorodacanoate and cetyltrimethyl-ammonium bromide–sodium octanoate by a combination of rheological, transmission electron microscopy (TEM) and polarized optical microscopy measurements. The binary mixtures of the surfactants have been analyzed at different mixed ratios and total concentration of the mixture. Mixtures containing a perfluorinated surfactant are able to form lamellar liquid crystals and stable spontaneous vesicles. Meanwhile, system containing just hydrogenated surfactants form hexagonal phases or they are arranged in elongated aggregates.  相似文献   

2.
《Supramolecular Science》1997,4(1-2):147-154
A new approach to nanostructure formation based on replication of an existing pattern of colloidal Au nanoparticles is described. The key steps in this strategy involve the coating of a well-defined Au colloid monolayer with an SiOx sol-gel, HF etching until colloidal particles are exposed, and removal of colloidal Au with aqua regia. This process was carried out on a two-dimensional array of 12nm diameter particles on an In-doped SnO2 (ITO) substrate, and monitored by UV-vis, electrochemistry, and atomic force microscopy (AFM). AFM data indicate the strategy is feasible, with clearly visible differences in surface morphology observed between bare ITO and colloidal Au-depleted, SiOx-coated ITO.  相似文献   

3.
The properties and phase behaviors of the catanionic mixtures consisting of tetradecyltrimetylammonium bromide (TTABr) and different anionic surfactants (i.e., sodium docanoate, C10HOONa; sodium laurate, C12HOONa; sodium perfluorodecanoate, C10FOONa) were examined, in particular when the molar mixing ratio in the aqueous solution was exactly 1:1. Although the three inspected systems have identical head groups and counterions, they exhibited very different lamellar (Lα) phases. When using the hydrogenated surfactants, the C10HOONa–TTABr system formed domain-like Lα/L1 two phases and the C12HOONa–TTABr system formed cream-like Lα/L1 two phases, respectively. In the case of the perfluorinated surfactant, the C10FOONa–TTABr system formed interdigitated and tilted Lα gel. The microstructures of the three Lα phases were characterized by polarized microscope, freeze-fracture transmission electron microscope, small angle X-ray scattering, and X-ray diffraction. The phase transition of the lamellar gel at different temperature was studied by differential scanning calorimetry and rheological measurements. The results elucidated the formation of the Lα phase in catanionic mixtures containing hydrogenated or fluorinated anionic surfactants with molar mixing ratio of 1:1.  相似文献   

4.
A novel type of surfactants named "host-guest surfactants" were designed and synthesized. The headgroup and hydrophobic tail of the new surfactants are connected by supramolecular interactions rather than covalent bonds. The inclusion complexes of a series of cyclodextrins (CDs) and alkanes/fluoroalkyl-grafted alkanes were synthesized and measured by surface tension, XRD, XPS, TGA, and NMR spectroscopy. The methyl-β-CD/hexadecane complex showed surface activity relative to those conventional hydrogenated surfactants. For the inclusion complex of hydroxypropyl-α-CD/C(8)F(17)SO(2)NHC(8)H(17), the structure was locked by subtle intermolecular recognition, which ensured the surprising surface activity similar to common excellent fluorinated surfactants. This surfactant, which was fabricated from nonsurface-active even insoluble components, showed the prospect that its surface activity might also be destroyed by introducing appropriate small species to extrude the guest from the cavity.  相似文献   

5.
A novel catanionic surfactants vesicle system composed of octyltriethylammonium bromide/ sodium dodecyl benzene sulfonate (C8NE3Br/SDBS) has been developed as pseudostationary phase (PSP) in EKC. The C8NE3Br/SDBS system possesses a large vesicle phase region and none of agglomeration phenomena appeared while mixing cationic and anionic surfactants at any molar ratio. Electrophoretic and chromatographic parameters including elution window, hydrophobic selectivity, polar group selectivity, and shape selectivity were characterized using the vesicle at molar ratio of C8NE3Br to SDBS of 3:7 as PSP. Compared with SDS micelles, the vesicle PSP possessed a wider elution window and a better selectivity. The retention behavior and selectivity differences between the novel vesicle and SDS micelles were evaluated through linear solvation energy relationship (LSER) analysis. Though the cohesiveness and the hydrogen bond acidity have greatest influences on the solutes retention and selectivity in both the vesicle and SDS micelle, the vesicle PSP demonstrated a higher hydrophobicity and a lower hydrogen bonding donating capability owing to compact bilayer structure of vesicle. Additionally, the vesicle system had a stronger hydrogen bond accepting capability than SDS micelle. Consequently, according to LSER analysis, the bigger coefficients for v, b, and a revealed the vesicle PSP had a better separation selectivity than conventional SDS micelle.  相似文献   

6.
Structural properties pertaining to the solvation of mixtures of dodecytrimethylammonium/dodecylsulfate adsorbed at water/air interfaces were studied using molecular dynamics techniques. Two different surfactant coverages, both in the submonolayer regime, were considered: an infinite-diluted catanionic pair and an equimolar mixture, at a surface concentration of 78.7 A2/headgroup. The most stable solvated structures for the single surfactant pair correspond to contact-head-ion-pairs (CHIP) at a distance close to 5 A. In addition, marginally stable solvent-separated-head-ion-pairs (SSHIP) at distances approximately 7 A were also observed. The mean free energy for the dissociation of CHIP was estimated to be approximately 1 kcal/mol. At finite surfactant concentrations, one observes a considerable degree of clustering between the amphiphiles, due to the strong Coulomb coupling between headgroups. The resulting spatial domains show asymmetric structures with linear dimensions comparable to the simulation box, suggesting the onset of percolative structures. The connectivity pattern of these domains was interpreted in terms of a simplified model consisting of two-dimensional charged Lennard-Jones spheres.  相似文献   

7.
The possibility of organizing detergent-solubilized membrane proteins in a plane within the core of Newton black films (NBFs) formed from fluorinated surfactants has been investigated. Fluorinated surfactants have the interesting characteristics of being poorly miscible with detergents and highly surface-active. As a result, when a membrane protein-the transmembrane domain of OmpA (tOmpA)-solubilized by the nonionic detergent C8E4 (tetraethylene glycol monooctyl ether) was injected under a monolayer of fluorinated surfactant, C8E4 and tOmpA/C8E4 complexes remained confined to the subphase. Vertical, macroscopic NBFs were drawn, and their structure was investigated by means of X-ray reflectivity. Depending on experimental conditions, the protein was shown to organize into either one or two monolayers stabilized by two monolayers of fluorinated surfactant. Two different mechanisms of protein insertion were investigated: (i) attachment of polyhistidine-tagged tOmpA/C8E4 complexes to nickel-bearing polar groups born by a fluorinated surfactant and (ii) spontaneous diffusion into the surfactant films. Possible applications are discussed.  相似文献   

8.
We extend our previous molecular dynamics experiments [Rodriguez et al., J. Phys. Chem. B 109, 24427 (2005)] to the analysis of the adsorption of catanionic surfactants at water/air interfaces, at a surfactant coverage close to that of the saturated monolayer: 30.3 A(2) per headgroup. The mixture of surfactants investigated corresponds to equal amounts of dodecytrimethylammonium (DTA) and dodecylsulfate (DS). The structure of the interface is analyzed in terms of the local densities and orientational correlations of all relevant interfacial species. In accordance with experimental evidence, the DTA headgroups penetrate deeper into the aqueous substrate than the DS ones, although the average positions of all headgroups, with respect to the interface, lie in positions somewhat more external than the ones observed at lower coverages. Average tail tilts are close to 45 degrees. The characteristics of the headgroup-water substrate correlations are also analyzed using a tessellation procedure of the interface. The density and polarization responses of the interfacial domains closest to the DS headgroups are enhanced, compared to those adjacent to the DTA detergents. Dynamical aspects related to the diffusion and to the orientational correlations of different water layers in close contact with the surfactant are also investigated.  相似文献   

9.
MnO(2)/TiN nanotubes are fabricated using facile deposition techniques to maximize the surface area of the electroactive material for use in electrochemical capacitors. Atomic layer deposition is used to deposit conformal nanotubes within an anodic aluminium oxide template. After template removal, the inner and outer surfaces of the TiN nanotubes are exposed for electrochemical deposition of manganese oxide. Electron microscopy shows that the MnO(2) is deposited on both the inside and outside of TiN nanotubes, forming the MnO(2)/TiN nanotubes. Cyclic voltammetry and galvanostatic charge-discharge curves are used to characterize the electrochemical properties of the MnO(2)/TiN nanotubes. Due to the close proximity of MnO(2) with the highly conductive TiN as well as the overall high surface area, the nanotubes show very high specific capacitance (662 F g(-1) reported at 45 A g(-1)) as a supercapacitor electrode material. The highly conductive and mechanically stable TiN greatly enhances the flow of electrons to the MnO(2) material, while the high aspect ratio nanostructure of TiN creates a large surface area for short diffusion paths for cations thus improving high power. Combining the favourable structural, electrical and energy properties of MnO(2) and TiN into one system allows for a promising electrode material for supercapacitors.  相似文献   

10.
Various mesoporous silica solids were prepared by using poly(ethylene oxide)-based surfactants as templates in a neutral, fluoride, or moderately acidic medium, and their properties examined by different physical techniques. Precipitation in an acid or neutral medium provided materials of pore size in between those of micropores and mesopores irrespective of the molecular size of the surfactant. On the other hand, syntheses in a fluoride-containing medium yielded mesoporous materials with pore diameters over the range 36-84 A that increased with increasing surfactant size. All materials possessed specific surface areas above 650 m(2)g(-1) and high pore volumes-particularly those obtained in a fluorinated medium. The conditions used in the syntheses and the fact that all produced highly disordered porous materials suggest that their mechanism of formation is essentially of the N(0)I(0) neutral type. The materials obtained in the presence of fluoride ion, which promote the condensation of siliceous species, retain greater amounts of surfactant and exhibit increased cross-linking and decreased particle sizes, which results in textural mesoporosity.  相似文献   

11.
We applied a molecular assembly formed in an aqueous surfactant mixture of cationic cetyltrimethylammonium bromide (CTAB) and anionic sodium octylsulfate (SOS) as templates of mesoporous silica materials. The hexagonal pore size can be controlled between 3.22 and 3.66 nm with the mixed surfactant system. In addition, we could observe the lamellar structure of the mixed surfactants with precursor molecules, which strongly shows the possibility of precise control of both the pore size and the structure of pores by changing the mixing ratio of surfactants. Moreover, use of the cationic surfactant having longer hydrophobic chain like stearyltrimethylammonium bromide (STAB) caused the increase in d(100) space and shifted the point of phase transition from hexagonal phase to lamellar phase to lower concentration of SOS.  相似文献   

12.
A series of partially fluorinated cationic gemini surfactants and their corresponding monomeric surfactants have been studied by isothermal titration microcalorimetry. The critical micelle concentration (CMC) and enthalpy of micellization (DeltaH(mic)) were obtained from calorimetric curves. The CMCs of the gemini surfactants are much lower than those of the corresponding monomeric surfactants and decrease with an increase in the number of fluorine atoms on the hydrophobic chain. The micellization of partially fluorinated cationic gemini surfactants is much more exothermic than that of the corresponding monomeric surfactants. Because of the incompatibility of hydrocarbon spacer and partially fluorinated chain, DeltaH(mic) values of the surfactants with a C6 spacer are more negative than those of the surfactants with a C12 spacer. The variations in the architecture of the fluorocarbon chain segments may be the reason of the irregularities in the change of DeltaH(mic) for the gemini surfactants. Moreover, the contribution of the enthalpy generally increases with an increase in the number of fluorine atoms.  相似文献   

13.
We herein report a facile, convenient, and economical method to prepare hollow polymer spheres (HSs). By virtue of the phase transformation of nonionic surfactant at its cloud point, hollow spheres of polystyrene were prepared from vesicle templates formed by potassium oleate (KO) and alkyl‐phenol polyoxyethylene (n ) ether (n = 10, OP) at 70–80 °C. The morphologies of the HSs were characterized by field‐emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The diameter of the HSs varies from 200 to 800 nm, and the shell thickness is uniformly c.a. 30–50 nm. The weight ratio of monomer/surfactant was as high as 7/1. The microstructure of the HSs was very stable and remained unchanged after drying or resuspension in water. The mechanism of the formation of HSs was explained on the theory of vesicles. Furthermore, the factors affecting the formation of the hollow structure were discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2533–2541, 2006  相似文献   

14.
We have examined the interfacial properties of several fluorinated surfactants in a water/CO2 mixture with a pendant drop tensiometer and revealed the relationships between the interfacial properties, the surfactant structure, and the microemulsifying power. We employed the following Aerosol-OT analogue surfactants that have two fluorinated tails: bis(1H,1H,5H-octafluoropentyl)-2-sulfosuccinate (di-HCF4), sodium bis(1H,1H,9H-hexadecafluorononyl)-2-sulfosuccinate (di-HCF8), sodium bis(1H,1H,2H,2H-heptadecafluorodecyl)-2-sulfosuccinate (8FS(EO)2), and sodium bis((1H,1H,2H,2H-heptadecafluorodecyl)-oxyethylene)-2-sulfosuccinate (8FS(EO)4). To discuss the effect of the fluorocarbon/hydrocarbon ratio in single surfactant molecules, water/CO2 interfacial tension (IFT) of a hybrid surfactant with one fluorocarbon and one hydrocarbon tail, that of a surfactant with a single fluorinated tail, and that of a hydrocarbon surfactant, Aerosol-OT (AOT), were examined. The hybrid surfactant employed was sodium 1-oxo-1-[4-(tridecafluorohexyl)phenyl]-2-hexanesulfonate (FC6-HC4), and the single-tailed surfactant was perfluoropolyether ammonium carboxylate (PFPECOONH4, CF3CF2(CF2OCF(CF3))4COONH4). All of the fluorinated AOT analogue surfactants exhibited an excellent level of activity at the water/CO2 interface compared with other fluorinated surfactants and AOT. With a larger hydrocarbon chain number in the CO2-philic tails (i.e., from 0 to 2), the IFT of the AOT analogue surfactants was increased. The area occupied by one surfactant molecule at the water/CO2 interface, A, and the critical microemulsion concentration, cmicroc, were determined and used to examine the water-to-surfactant molar ratio within a reversed micelle, W0c, of the surfactants. The surfactants that form W/scCO2 microemulsions with a large W0c were found to lower the interfacial tension efficiently irrespective of increases in temperature. To achieve the most desirable W0C, the surfactant needs not only a high CO2-philicity of the tails but also a high Krafft point, properties which induce a low hydrophilic/CO2-philic balance.  相似文献   

15.
Parasites of the Trypanosomatidae family are responsible for diseases that afflict several million people worldwide. Currently there is an urgent need for new drugs against these diseases and an approach to drug discovery is the study of biochemical and structural properties of a potential target and the subsequent design of specific compounds. Trypanosomatid genes coding for enzymes which distinctively hydrolyze dUTP have been isolated by genetic complementation in Escherichia coli mutants defective in dUTPase activity. An analysis of these sequences from Leishmania major and Trypanosoma cruzi showed that no significant similarity could be established with the family of known dUTPases and that the five consensus motifs were absent. However, limited similarity was identified for three motifs present in an enzyme related in function the dCTPase-dUTPase from T phages and 35 percent identity with a putative dUTPase identified in the eubacteria Campylobacter jejuni. T. cruzi and L. major dUTPases were highly similar and catalyzed in a specific fashion the hydrolysis of dUTP. A detailed kinetic study of both enzymes revealed that dUDP is also an efficient substrate of the enzyme while other nucleotides are poorly hydrolyzed. The enzyme is essential for viability in Leishmania and is up-regulated by inhibitors of dTMP synthesis. Thus, a new family of dUTPases might exist in certain organisms that bear no sequence or structure similarity with eukaryotic enzymes accomplishing the same function and that may constitute potential drug targets for the development of specific inhibitors.  相似文献   

16.
Mesoporous silica materials were synthesized using tetraеthoxysilane as precursor and liquid crystals formed in aqueous mixtures of cetyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) as templates, without and with the addition of NaBr or Na2SO4. For this purpose, the formation of liquid crystals as a function of the ratio of CTAB and SDS under different conditions was studied. It was found that liquid crystals formed in the mixed system of CTAB and SDS at certain mixing ratios are well-structured templates for the synthesis of mesoporous silicas. The synthesized silica materials were characterized by transmission electron microscope and nitrogen adsorption/desorption analysis. The pore size of mesoporous silicas could be controlled between 3 to 6 nm by simply changing the concentration of NaBr in solution. The mesoporous silicas exhibited lamellar structure and the order of structural arrangement was promoted with addition of NaBr. However, addition of Na2SO4 led to ink-bottle type pores of mesoporous silica with a narrow pore size distribution of around 2 nm and a higher specific surface area of 610 m2 g–1.  相似文献   

17.
Carbonaceous catalysts are potential alternatives to metal catalysts. Graphene has been paid much attention for its high surface area and light weight. Here, hydrogenated graphene has been prepared by a simple gamma ray irradiation of graphene oxide aqueous suspension at room temperature. Transmission electron microscopic, element analysis, X-ray photoelectron spectroscopy, and UV-Vis spectrophotometer studies verified the hydrogenation of graphene. The as-prepared hydrogenated graphene can be used as a metal-free carbonaceous catalyst for the Fenton-like degradation of organic dye in water.  相似文献   

18.
We report the synthesis, characterization, and extraction of Au dendrimer-encapsulated nanoparticles (DENs) prepared in organic solvents. DENs composed of 31 and 55 Au atoms were prepared using organic solvents and poly(amidoamine) (PAMAM) dendrimer templates modified on their periphery with dodecyl groups. The spectral and microscopic properties of the resulting materials were identical to those prepared using water-soluble PAMAM dendrimers. It was possible to extract the organic-soluble DENs into water using the water-soluble thiols tiopronin and glutathione. The properties of the resulting monolayer-protected clusters were nearly identical to those of the precursor DENs. A mechanistic model for the extraction process is discussed. The synthetic methodology reported here provides a convenient method for preparing DENs of non noble metals such as Ni and Fe.  相似文献   

19.
Close-packed colloidal crystals are promising precursors for novel materials, but only after appropriate methods are developed to fix their structure. A wide range of advanced materials has recently been synthesized by replicating the structure of colloidal crystals into durable solid matrices. Such materials with structured pores have promise as photonic crystals, catalysts, and membranes, and in a variety of other applications. This paper reviews the methods used in the formation of these materials and likely future trends in the field.  相似文献   

20.
We report the synthesis of 34 second-generation Sansalvamide A derivatives. San A derivatives have unique anticancer properties and target multiple cancers, including colon, pancreatic, breast, prostate, and melanoma. As novel templates, the derivatives described herein explore the role of stereochemistry, amide bond geometry, transannular hydrogen bonding, and polarity on antitumor potency. Testing the chemotherapeutic activity of these derivatives against multiple cancer cell lines will provide clear structural motifs and identify conformational space that is important for cytotoxicity. The 34 compounds presented are divided into six series, where five series involve the insertion of D-amino acids in conjunction with four structural features at each of the five positions of the macrocycle. The sixth series involves comparison between all L- and all D-amino acid derivatives with N-methyls placed at each position around the macrocyclic core. The four structural features explored in conjunction with D-amino acids include N-methyl amino acids, aromatic amino acids, polar amino acids, and hydrophobic alkyl amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号