首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A predominate question associated with supported bilayer assemblies containing proteins is whether or not the proteins remain active after incorporation. The major cause for concern is that strong interactions with solid supports can render the protein inactive. To address this question, a large transmembrane protein, the serotonin receptor, 5HT(3A), has been incorporated into several supported membrane bilayer assemblies of increasing complexity. The 5HT(3A) receptor has large extracellular domains on both sides of the membrane, which could cause strong interactions. The bilayer assemblies include a simple POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) supported planar bilayer, a “single-cushion” POPC bilayer with a PEG (poly(ethylene glycol)) layer between membrane and support, and a “double-cushion” POPC bilayer with both a PEG layer and a layer of BSA (bovine serum albumin). Single-cushion systems are designed to lift the bilayer from the surface, and double-cushion systems are designed to both lift the membrane and passivate the solid support. As in previously reported work, protein mobilities measured by ensemble fluorescence recovery after photobleaching (FRAP) are quite low, especially in the double-cushion system. But single-particle tracking of fluorescent 5HT(3A) molecules shows that individual proteins in the double-cushion system have quite high local mobilities but are spatially confined within small corralling domains ( 450 nm). Comparisons with the simple POPC membrane and the single-cushion POPC?PEG membrane reveal that BSA both serves to minimize interactions with the solid support and creates the corrals that reduce the long-range (ensemble averaged) mobility of large transmembrane proteins. These results suggest that in double-cushion assemblies proteins with large extra-membrane domains may remain active and unperturbed despite low bulk diffusion constants.  相似文献   

2.
The behavior of poly(ethylene glycol) (PEG) conjugated lipids was investigated in planar supported egg phosphatidylcholine bilayers as a function of lipopolymer density, chain length of the PEG moiety, and type of alkyl chains on the PEG lipid. Fluorescence recovery after photobleaching measurements verified that dye-labeled lipids in the membrane as well as the lipopolymer itself maintained a substantial degree of fluidity under most conditions that were investigated. PEG densities exceeding the onset of the mushroom-to-brush phase transition were found to confer air stability to the supported membrane. On the other hand, substantial damage or complete delamination of the lipid bilayer was observed at lower polymer densities. The presence of PEG in the membrane did not substantially hinder the binding of streptavidin to biotinylated lipids present in the bilayer. Furthermore, above the onset of the transition into the brush phase, the protein binding properties of these membranes were found to be very resilient upon removal of the system from water, rigorous drying, and rehydration. These results indicate that supported phospholipid bilayers containing lipopolymers show promise as rugged sensor platforms for ligand-receptor binding.  相似文献   

3.
Needham D  Mills J  Eichenbaum G 《Faraday discussions》1998,(111):103-10; discussion 137-57
The exchange of the protonatable polymer, poly(2-ethylacrylic acid) (PEAA), has been studied with vesicle membranes containing cholesterol from 0 to 60 mol% or PEG2000-lipid (5 mol%). The release of an entrapped dye from 100 nm extruded liposomes was used as an assay for membrane perturbation by the polymer as a function of pH. The inclusion of cholesterol was found to reduce the pH at which the polymer caused release of the dye from the lipid vesicles, and the degree of polymer protonation (i.e., degree of hydrophobicity) correlated well with the increase in elastic expansion modulus of the vesicle bilayer. The results are discussed in terms of a balance between polymer solubility and membrane expansion. With respect to the PEG barrier, the presence of 5 mol% PEG2000, which represents full surface coverage, did not prevent PEAA from inducing contents release, demonstrating that highly hydrated polymeric layers are not effective barriers for other water soluble polymers, and may point to some association between the two polymers.  相似文献   

4.
A technique for size-selective discrimination of protein analytes was developed by incorporating poly(ethylene glycol) (PEG) lipopolymers into supported lipid bilayers. The membranes also contained biotinylated lipids, which recognized both streptavidin and anti-biotin IgG. By employing various PEG lipopolymer concentrations, clear discrimination against anti-biotin (Mw = 150 000 Da) binding could be observed, which became more pronounced at higher polymer densities. On the other hand, streptavidin (Mw = 52 800) binding to the membrane remained unaffected even at PEG concentrations that were well into the mushroom-to-brush phase transition. These observations were exploited to create an on-chip ligand-receptor binding assay that favored streptavidin binding over anti-biotin by several orders of magnitude in the presence of the lipopolymer. Control experiments revealed that the two proteins are bound to similar extents from a multi-protein analyte solution in the absence of PEG.  相似文献   

5.
We report a simple method to confine transmembrane cell receptors in stripe micropatterns of a lipid/lipopolymer monolayer, which are formed as result of the transfer onto a solid substrate. The stripes are aligned perpendicular to the meniscus, whose periodicity can systematically be tuned by the transfer velocity. This strongly suggests the dominant role of the cooperative interaction between the film and substrate. Selective fluorescence labeling of lipids and lipopolymers confirms that the observed patterns coincide with the demixing of two species. Covalent coupling of polymer headgroups enables us to use the stripe patterns as a support for a lipid bilayer membrane. Spreading of lipid vesicles with platelet integrin alphaIIbbeta3 on a self-assembled membrane micropattern demonstrates that cell adhesion receptors are selectively incorporated into the lipopolymer-rich region. The method established here provides us with a tunable template for the confinement of receptor proteins to geometrically control the cell adhesion.  相似文献   

6.
Liquid-liquid partition chromatography of bio-polymers requires aqueous two-phase systems for reasons of sample solubility and stability. Such aqueous two-phase systems form when thermodynamically incompatible polymers are co-dissolved in water. The most common polymer combination providing a two-phase system at reasonably low polymer concentrations is the combination of poly(ethylene glycol) (“PEG”) and dextran (“DX”), detected and introduced for the separation of biopolymers and cells by Albertsson about 30 years ago. The application of this powerful system for liquid-liquid partition chromatography requires support materials with surfaces able to immobilize selectively one of the two aqueous phases. This phase immobilisation may be achieved by exploiting incompatibilities between the polymers dominating in the phases and the hydrated support surface. Examples involving diol-modified silica and polyacrylamide coated diol-silica as support materials in aqueous PEG-DX and PEG-salt systems are presented. The application of such systems for the separation of biopolymers is demonstrated.  相似文献   

7.
Stable lipid membranes with controlled substrate-membrane spacing can be prepared using well-defined lipopolymers as a tether. Based on the living cationic ring-opening polymerization of 2-methyl- or 2-ethyl-2-oxazoline, lipopolymers can be synthesized bearing a lipid head group as well as a silanol reactive coupling end group. Using a “grafting onto” procedure these polymers can form dense, brush like monolayers, whose layered structures can be obtained by x-ray reflectivity measurements. By transfer of a pre-organized monolayer that is followed by vesicle fusion, stable polymer supported lipid membranes can be prepared. The substrate-membrane spacing can be controlled via the degree of polymerization, while the lateral diffusion of lipids within the membrane depends on the density of polymer tethers. Preliminary experiments implied that the membrane with long (N = 40) polymer tethers could reside trans-membrane receptors homogeneously, suggesting a large potential of this strategy.  相似文献   

8.
Inclusion of a polymer cushion between a lipid bilayer membrane and a solid surface has been suggested as a means to provide a soft, deformable layer that will allow for transmembrane protein insertion and mobility. In this study, mobile, tethered lipid bilayers were formed on a poly(ethylene glycol) (PEG) support via a two-step adsorption process. The PEG films were prepared by coadsorbing a heterofunctional, telechelic PEG lipopolymer (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol)-2000-N-[3-(2-(pyridyldithio)propionate]) (DSPE-PEG-PDP) and a nonlipid functionalized PEG-PDP from an ethanol/water mixture, as described in a previous paper (Munro, J. C.; Frank, C. W. Langmuir 2004, 20, 3339-3349). Then a two-step lipid adsorption strategy was used. First, lipids were adsorbed onto the PEG support from a hexane solution. Second, vesicles were adsorbed and fused on the surface to create a bilayer in an aqueous environment. Fluorescence recovery after photobleaching experiments show that this process results in mobile bilayers with diffusion coefficients on the order of 2 microm2/s. The mobility of the bilayers is decreased slightly by increasing the density of tethered lipids. The formation of bilayers, and not multilayer structures, is also confirmed by surface plasmon resonance, which was used to determine in situ film thickness, and by fluorimetry, which was used to determine quantitatively the fluorescence intensity for each 18 by 18 mm sample. Unfortunately, fluorescence microscopy also shows that there are large defects on the samples, which limits the utility of this system.  相似文献   

9.
Inclusion of a polymer cushion between a lipid bilayer membrane and a solid surface has been suggested as a means to provide a soft, deformable layer that will allow for transmembrane protein insertion and mobility. In this study, the properties of a heterofunctional, telechelic PEG lipopolymer (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol)-2000-N- [3-(2-(pyridyldithio)propionate]) (DSPE-PEG-PDP) adsorbed from ethanol and water solutions onto gold surfaces were studied using a variety of surface-sensitive techniques. X-ray photoelectron spectroscopy showed that the PEG molecules are tethered to the gold surface via thiolate bonds. When adsorbed from water, ethanol, or their mixtures, reflection-absorption infrared spectroscopy showed that amorphous PEG layers with disordered DSPE alkyl chains were formed, independent of adsorption time or solution concentration. On the basis of advancing and receding water and hexadecane contact angles on the lipopolymer films, the DSPE lipid groups appear to segregate from the PEG layer and become exposed at the surface of the polymer films. Swelling observed in surface plasmon resonance experiments and the large contact angle hysteresis observed indicate that highly swellable, mobile films capable of molecular rearrangements are formed. The self-assembling and amorphous properties of these PEG layers make them ideal candidates as polymer cushions for polymer-supported lipid bilayers. The DSPE surface concentration can be controlled, to a limited degree, by varying the adsorption time of DSPE-PEG-PDP from ethanol. A more effective strategy is to coadsorb DSPE-PEG-PDP with a non-lipid-functionalized PEG-PDP from an ethanol/water mixture, which allows the PEG thickness and density to remain constant while decreasing the density of DSPE groups.  相似文献   

10.
Membrane proteins are some of the most sophisticated molecules found in nature. These molecules have extraordinary recognition properties; hence, they represent a vast source of specialized materials with potential uses in sensing and screening applications. However, the strict requirement of the native lipid environment to preserve their structure and functionality presents an impediment in building biofunctional materials from these molecules. In general, the purification protocols remove the native lipid support structures found in the cellular environment that stabilize the membrane proteins. Furthermore, the membrane protein structure is often highly complex, typified by large, multisubunit complexes that not only span the lipid bilayer but also contain large (>2 nm) cytoplasmic and extracellular domains that protrude from the membrane. The present study is focused on using a biomimetic approach to build a stable, fluid microenvironment to be used to incorporate larger membrane proteins of interest into a tether-supported lipid bilayer membrane adequately spaced above a substrate passivated to liposome fusion and nonspecific adsorption. Our aim is to reintroduce the supporting structures of the native cell membrane using self-assembled supramolecular complexes constructed on microspheres in an artificial cytoskeleton motif. Central to our architecture is to utilize bacteriorhodopsin (bR), a transmembrane protein, as a biomembrane anchoring molecule to be tethered to surfaces of interest as a sparse structural element in the design. Compared to a typical lipid tether, which inserts into one leaflet of the lipid bilayer, bR anchoring provides an over 8-fold greater hydrophobic surface area in contact with the bilayer. In the work presented here, the silica microsphere surface was biofunctionalized with streptavidin to make it a suitable supporting interface. This was achieved by self-assembly of (p-aminophenyl)trimethoxysilane on the silica surface followed by subsequent conjugation of biotin-PEG3400 (PEG = poly(ethylene glycol) and PEG2000 for further passivation and the binding of streptavidin. We have conjugated bR with biotin-PEG3400 through amine-based coupling to use it as a tether. The biotin-PEG-bR conjugate was further labeled with Texas Red to facilitate localization via fluorescence imaging. Confocal microscopy was utilized to analyze the microsphere surface at different stages of surface modification by employing fluorescent staining techniques. Sparely tethered supported lipid bilayer membranes were constructed successfully on streptavidin-functionalized silica particles (5 mum) using a detergent-based method in which tethered bR nucleates self-assembly of the bilayer membrane. The fluidity of the supported membranes was analyzed using fluorescence recovery after photobleaching in confocal imaging detection mode. The phospholipid diffusion coefficients obtained from these studies indicated that nativelike fluidity was achieved in the tether-supported membranes, thus providing a prospective microenvironment for insertion of membrane proteins of interest.  相似文献   

11.
A quartz crystal resonator was used to characterize the contact of an elastomeric polymer membrane with a grafted poly(ethylene glycol) (PEG) brush in an aqueous environment. A two-layer model of the acoustic impedance of the system was used to measure the brush thickness before and after contact with the membrane. This model was further extended to include multiple layers, allowing characterization of other monomeric density profiles along the brush thickness. The polymer brush maintains a hydrated layer between the membrane and the quartz crystal surface, the thickness of which could be determined to within 1 nm. We show that the technique is very well suited for studying the properties of highly hydrated layers with thicknesses between 0 and 100 nm at low contact pressures corresponding to a very weak compression of the PEG brush.  相似文献   

12.
We have combined Langmuir monolayer film experiments and all-atom molecular dynamics (MD) simulation of a bilayer to study the surface structure of a PEGylated liposome and its interaction with the ionic environment present under physiological conditions. Lipids that form both gel and liquid-crystalline membranes have been used in our study. By varying the salt concentration in the Langmuir film experiment and including salt at the physiological level in the simulation, we have studied the effect of salt ions present in the blood plasma on the structure of the poly(ethylene glycol) (PEG) layer. We have also studied the interaction between the PEG layer and the lipid bilayer in both the liquid-crystalline and gel states. The MD simulation shows two clear results: (a) The Na(+) ions form close interactions with the PEG oxygens, with the PEG chains forming loops around them and (b) PEG penetrates the lipid core of the membrane for the case of a liquid-crystalline membrane but is excluded from the tighter structure of the gel membrane. The Langmuir monolayer results indicate that the salt concentration affects the PEGylated lipid system, and these results can be interpreted in a fashion that is in agreement with the results of our MD simulation. We conclude that the currently accepted picture of the PEG surface layer acting as a generic neutral hydrophilic polymer entirely outside the membrane, with its effect explained through steric interactions, is not sufficient. The phenomena we have observed may affect both the interaction between the liposome and bloodstream proteins and the liquid-crystalline-gel transition and is thus relevant to nanotechnological drug delivery device design.  相似文献   

13.
In order to build up tether-supported membranes, we have focused on the synthesis of lipopolymers. Different lipid analog initiators based on 2-bromopropionamide have been synthesized. In addition, fluorescence-labeled lipoinitiators using pyrene were synthesized. These initiators were used for the synthesis of polyacrylamide copolymers by atom-transfer radical polymerization. A final surface-anchor end group was attached to the polymers by polymer analogous reaction. In this way, α,β-functionalized polyacrylamides were obtained. The interaction of these lipopolymers with different lipid bilayer structures was investigated in several experiments. The lipopolymers adsorb onto the surface of vesicles as shown by photon correlation spectroscopy and fluorescence measurements. The fixation of these lipopolymers on flat surfaces was studied using surface plasmon spectroscopy. The film thickness of the adsorbed lipopolymer films is about 12 to 20 Å. The surfaces thus modified can be used for the fixation of lipid vesicles to form polymer-supported bilayers. This leads to an additional thickness increase of 41–62 Å.

Schematic representation of the newly synthesized lipopolymers and the polymer-supported bilayers made therefrom.  相似文献   


14.
The measurement of single poly(ethylene glycol) (PEG) molecules interacting with individual bilayer lipid membrane-bound ion channels is presented. Measurements were performed within a polymer microfluidic system including an open-well bilayer lipid membrane formation site, integrated Ag/AgCl reference electrodes for on-chip electrical measurements, and multiple microchannels for independent ion channel and analyte delivery. Details of chip fabrication, bilayer membrane formation, and alpha-hemolysin ion channel incorporation are discussed, and measurements of interactions between the membrane-bound ion channels and single PEG molecules are presented.  相似文献   

15.
Lipid bilayers were deposited inside the 0.2 microm pores of anodic aluminum oxide (AAO) filters by extrusion of multilamellar liposomes and their properties studied by 2H, 31P, and 1H solid-state NMR. Only the first bilayer adhered strongly to the inner surface of the pores. Additional layers were washed out easily by a flow of water as demonstrated by 1H magic angle spinning NMR experiments with addition of Pr3+ ions to shift accessible lipid headgroup resonances. A 13 mm diameter Anopore filter of 60 microm thickness oriented approximately 2.5 x 10(-7) mol of lipid as a single bilayer, corresponding to a total membrane area of about 500 cm2. The 2H NMR spectra of chain deuterated POPC are consistent with adsorption of wavy, tubular bilayers to the inner pore surface. By NMR diffusion experiments, we determined the average length of those lipid tubules to be approximately 0.4 microm. There is evidence for a thick water layer between lipid tubules and the pore surface. The ends of tubules are well sealed against the pore such that Pr3+ ions cannot penetrate into the water underneath the bilayers. We successfully trapped poly(ethylene glycol) (PEG) with a molecular weight of 8000 in this water layer. From the quantity of trapped PEG, we calculated an average water layer thickness of 3 nm. Lipid order parameters and motional properties are unperturbed by the solid support, in agreement with existence of a water layer. Such unperturbed, solid supported membranes are ideal for incorporation of membrane-spanning proteins with large intra- and extracellular domains. The experiments suggest the promise of such porous filters as membrane support in biosensors.  相似文献   

16.
Floating supported bilayers (FSBs) are new systems which have emerged over the past few years to produce supported membrane mimics, where the bilayers remain associated with the substrate, but are cushioned from the substrates constraining influence by a large hydration layer. In this paper we describe a new approach to fabricating FSBs using a chemically grafted phospholipid layer as the support for the floating membrane. The grafted lipid layer was produced using a Langmuir-Schaeffer transfer of acryloyl-functionalized lipid onto a pre-prepared substrate, with AIBN-induced cross-polymerization to permanently bind the lipids in place. A bilayer of DSPC was then deposited onto this grafted monolayer using a combination of Langmuir-Blodgett and Langmuir-Schaeffer transfer. The resulting system was characterized by neutron reflection under two water contrasts, and we show that the new system shows a hydrating layer of approximately 17.5 A in the gel phase, which is comparable to previously described FSB systems. We provide evidence that the grafted substrate is reusable after cleaning and suggest that this greatly simplifies the fabrication and characterization of FSBs compared to previous methods.  相似文献   

17.
The study of lipid structure and phase behavior at the nanoscale is of utmost importance due to implications in understanding the role of the lipids in biochemical membrane processes. Supported lipid bilayers play a key role in understanding real biological systems, but they are vastly underrepresented in computational studies. In this paper, we discuss molecular dynamics simulations of supported lipid bilayers using a coarse-grained model. We first focus on the technical implications of modeling solid supports for biomembrane simulations. We then describe noticeable influences of the support on the systems. We are able to demonstrate that the bilayer system behavior changes when supported by a hydrophilic surface. We find that the thickness of the water layer between the support and the bilayer (the inner-water region in the latter part of this paper) adapts through water permeation on the microsecond time scale. Additionally, we discuss how different surface topologies affect the bilayer. Finally, we point out the differences between the two leaflets induced by the support.  相似文献   

18.
Molecular dynamics simulations of polypeptides at high dilution near a fully hydrated bilayer membrane have been performed. In contrast to previous theoretical predictions, Monte Carlo simulations and conclusions from experiments a spontaneous insertion of amphiphatic or hydrophobic proteins into a membrane is not observed. Rather it is found that an amphiphatic chain has the tendency to remain in proximity to the membrane surface, whereas the location of a hydrophobic chain is more unbound. This is shown using two proteins, melittin and polyleucine. The conformation of the proteins and their orientation with respect to the membrane surface are discussed.  相似文献   

19.
We report the synthesis of polymer capsules from amphiphilic graft copolymers composed of reactive, hydrophobic polyolefin backbones and hydrophilic poly(ethylene glycol) (PEG) grafts. The capsules are produced by self-assembly of the polymers at the oil-water interface, followed by cross-linking with bis-cyclooctene PEG derivatives. The fluorescence of these capsules results from integration of rhodamine B functionalized cyclooctene 1 into the polymer structure. The use of the graft copolymer architecture in capsule synthesis provides significant opportunities to tune both the surface properties, in terms of recognition, and the membrane properties, in terms of mechanical strength, encapsulation, and release.  相似文献   

20.
We present the synthesis of novel 2-oxazoline monomers with different 2-substituents and their consecutive conversion into lipopolymers by living cationic polymerization. The side functions of these monomers were varied to realize different steric needs and hydrogen bonding interactions of the polymer side chains. 2-(2'-N-pyrrolidonyl-ethyl)-2-oxazoline, 2-(3'-methoxymonoethyleneglycol)propyl-2-oxazoline, and 2-(3'-methoxytriethyleneglycol)propyl-2-oxazoline were synthesized. All of the monomers could be converted into the corresponding lipopolymers by living cationic polymerization using 2,3-di-O-octadecyl-1-trifluormethansulfonyl-sn-glycerol as the initiator. The characterization of the 2,3-di-O-octadecyl-glycerol-poly(2-oxazoline) lipopolymers by NMR spectroscopy, IR spectroscopy, and gel permeation chromatography revealed that the targeted molar masses and compositions can be controlled by the initial initiator/monomer ([M](0)/[I](0)) ratio for all the synthesized lipopolymers. The polydispersities were found to be narrow (polydispersity indices from 1.06-1.3). The amphiphilic lipopolymers were spread at the air-water interface (Langmuir-Blodgett film balance) and the effect of the polymer side groups and chain lengths upon the Pi-area (A) isotherms of the corresponding lipopolymer monolayers were compared and analyzed. The impact of the polymer side functionalities on a 2D gel formation was examined using an interfacial rheometer operated in an oscillating stress-strain mode. Interestingly enough, none of the newly synthesized lipopolymers showed a rheological transition. This somewhat surprising result not only verified that these 2D gels are not established by hydrogen bonding among hydrophilic polymer moieties, as earlier proposed, but also supported the concept of jammed surface micelles as the more likely origin for the gelation phenomenon. [Diagram: see text]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号