首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
根据质量守恒、动量守恒及能量守恒原理,建立了自然对流情形下激光辐照液体贮箱的理论模型。通过方程分析法,导出了该问题的尺度律,在此基础上给出了激光辐照液体贮箱的缩比方法,并对一组实例进行了数值计算,得到了缩比模型与原型结果完全相似的结论,模拟结果证明了该问题尺度律的成立。为验证理论模型与数值求解的正确性,本文还针对小尺度模型进行了实验研究,数值模拟结果与实验测量结果符合较好,表明理论模型可靠有效。  相似文献   

2.
激光辐照热力耦合问题的相似性   总被引:4,自引:1,他引:3       下载免费PDF全文
 由量纲理论出发,分析了激光辐照热力耦合理论的无量纲化基本方程组。在一定的近似条件下,导出了激光辐照热力耦合问题的一般相似性准则,该相似准则不受与温度相关的材料特性的约束。在此基础上给出了强激光辐照充压圆柱壳体热力效应的缩比方法,并对一组实例进行了计算,得到了缩比模型与原型结果几乎完全相似的结论。理论分析与数值计算表明,激光辐照热力耦合问题在合理的近似下满足相似律。  相似文献   

3.
为了分析激光辐照下反射镜热变形对光束质量的影响, 本文建立了激光光束45°角入射时镀铬介质高吸收镜的热固耦合模型, 对不同辐照光束下反射镜的热变形和镜体厚度对热变形的影响进行了分析, 并用哈特曼波前传感器对自由边界条件下的镜面热变形进行了检测。结果表明:吸收功率在0.085~0.185 W时, 镜面热变形随吸收功率的增加近似线性增加, 随辐照光斑的增加而减小;反射镜厚度在1~5 mm范围, 镜面热变形基本不变。在激光照射的初始阶段, 反射镜表面温度和热变形迅速增加, 在激光连续照射20 s后, 镜面温度增加量逐步变缓, 镜面热变形则在1 s以内就上升至0.27 μm, 之后变形量缓慢增加, 在100 s后达到相对稳定状态;关闭激光后, 镜面在120 s后恢复到初始状态。分析表明, 产生误差的因素主要为光斑大小和辐照光束入射角度。  相似文献   

4.
为了减小激光辐照下反射镜镜面的热变形问题,建立了反射镜热变形的有限元分析模型。对不同制冷功率时的镜面热变形进行分析,然后针对吸收功率为50 W、光斑半径为镜体半径1/3时的TEM00模高斯光束对镜体结构进行优化,对优化后的反射镜在不同参数的TEM00模高斯光束和TEM10、TEM11模厄米特-高斯光束辐照下的热变形进行了分析。仿真结果表明,当施加滞后于激光辐照且与吸收功率近似大小的制冷时,有利于减小镜面热变形,且镜体最终会趋于相对稳定的热平衡状态。此外,当镜体背部切去一厚度为1.4 mm、内径为25 mm的环状区域时,热变形峰谷(PV)值仅为0.005μm;同时,优化后的镜体也可在一定程度上减小其他参数激光辐照下的镜面热变形的PV值。对于TEM00模高斯光束和TEM10、TEM11模厄米特-高斯光束,均满足光学系统对热变形的要求。  相似文献   

5.
短波长化学激光系统反射镜研制   总被引:2,自引:1,他引:1       下载免费PDF全文
 报道了短波长化学激光系统高反射镜的膜系设计、镀膜材料的选取、反射膜制备技术、基板加工、反射镜性能测试和各种膜系反射镜在强激光辐照下的热畸变和损伤。  相似文献   

6.
强激光通过反射镜、窗口等光学元件传输过程中,光学材料对激光会有微弱的吸收,由此引起光学元件的热畸变,影响传输效率和远场能量集中度。基于三维瞬态热传导方程和弹性应力-应变方程,研究了波长1.315μm非对称环形强激光束辐照下硅反射镜、白宝石窗口的温度、变形和应力的分布规律,特别研究了激光强度、激光输出时间、光束遮拦比、光强分布的空间梯度等对元件热效应的影响;还研究了波长3.8μm非对称空心矩形激光束辐照下氟玻璃窗口温度、变形和应力的分布规律。计算了变形对光束波前位相和光束质量的影响。  相似文献   

7.
强激光辐照下预载柱壳热屈曲失效的数值分析   总被引:3,自引:0,他引:3       下载免费PDF全文
 采用有限元方法(ANSYS7.0)和简易的热力耦合本构关系,较系统地数值研究了预载柱壳受激光辐照时的热力响应和热屈曲失效行为,分析了几种壳体在不同预载条件下(轴压或内压)的屈曲模态和屈曲特征值,给出了屈曲模态和热屈曲失效与激光强度、辐照时间、预载条件和壳体几何尺度及形状间的定量或定性关系。计算结果表明:(1)屈曲失效行为主要集中在激光辐照区内且以径向屈曲为主。(2)在一定范围内,屈曲特征值与光斑中心点温度近似有线性关系。(3)激光辐照区内高温引起的材料软化和预载径向变形的耦合作用是柱壳发生热屈曲失效的根本原因,有效提高结构刚度,可使屈曲特征值提高。(4)壳体形状的改变对内压柱壳有更为明显的影响,其中圆柱形壳体屈曲特征值最大,因此具有较高的安全性。  相似文献   

8.
非均匀激光辐照下硅镜热变形对光束传输特性的影响   总被引:10,自引:1,他引:9  
 使用有限元法计算了硅镜在DF化学激光器非稳腔输出的中空非均匀激光辐照下镜面温升和反射面面形随时间变化的特性,使用65阶Zernike多项式对镜面面形进行了曲面拟合,使用光线追迹的方法计算了平行光束经不同数量硅镜反射后的光束波前分布PV值、Strehl比和Zernike像差系数随时间变化的特性。计算结果表明:在典型的DF激光器输出的中空方形光束辐照下,硅反射镜的热变形将使反射光束产生波前畸变,波前畸变中,y方向像散项占据主要地位,其次是离焦项;随着激光系统中反射镜面数量的增加,高阶像差系数将逐渐增大,且波前PV值与反射次数成线性关系。  相似文献   

9.
大口径光学元件环境热稳定性的有限元分析   总被引:1,自引:0,他引:1       下载免费PDF全文
 讨论了靶场光学元件在环境热载荷作用下的变形分析理论和数学描述,采用有限元分析软件ANSYS建立了靶场反射镜的模型,用靶场实测环境温度变化作为载荷,计算得到了反射镜在靶场温度变化0.3 ℃时,垂直镜面方向的变形及其在平行于镜面平面内的转角漂移。结果表明:在当前的温控条件下,光学元件在环境热载荷作用下的变形满足稳定性设计要求。并计算了几种环境温度变化下反射镜的变形和转角漂移。初步的结果表明:环境温度变化与反射镜的转角漂移成正比。  相似文献   

10.
 利用交替方向隐式有限差分法分析了高能激光器虚共焦非稳腔反射镜的温度场及热变形的数值计算方法。以单晶硅为例,计算了反射镜由于吸收激光能量而形成的温度场分布以及由此引起的热变形对谐振腔几何结构参数的影响,并在此基础上数值模拟了热畸变情况下正支虚共焦非稳腔的远场光强分布。计算结果表明:在激光束辐照的开始阶段,温升场主要集中在激光束辐照的中心区域内,在整个镜面上远未拉平,由此引起的厚度方向温升分布也是如此,很不均匀。  相似文献   

11.
A complete theoretical model is presented for the thermal mirror technique under top-hat laser excitation. Considering the attenuation of the top-hat excitation laser intensity along the thickness of a sample due to its optical absorption coefficient, we calculate the laser-induced temperature and surface deformation profiles. A simplified theoretical model for a high absorption sample is also developed. The center intensity of a probe beam reflected from the thermal mirror at a detector plane is derived. Numerical simulation shows that the thermal mirror under the top-hat laser excitation is as sensitive as that under Gaussian laser excitation. With top-hat laser excitation, the experimental results of thermo-physical properties of opaque samples are found to be well consistent with literature values, validating the theory.  相似文献   

12.
袁磊  王毕艺  罗超  郦文忠  冉均均  柳建 《强激光与粒子束》2023,35(2):021003-1-021003-7
为研究红外探测系统受激光辐照后的热效应与二次热辐射对探测器成像的影响,使用Ansys软件对红外探测器进行热辐射仿真和有限元结构仿真;采用黑体辐射定律和DO辐射计算模型模拟计算探测器内光学系统在不同激光辐照度下的温度随时间变化情况以及探测器内部温升对靶面成像的二次热辐射干扰情况;采用热弹性力学模型仿真计算探测器内部的热应力和热变形情况。结果表明:探测器受到1.06μm激光照射,矫正镜激光辐照度在50 W/cm2时,靶面受到二次热辐照度在0.6 s时达到100μW/cm2的量级,使红外探测器达到饱和;探测器受激光辐照后系统最高温度出现在矫正镜中心处,拟合得到系统最高温度与受照时间函数关系,可预测探测器升温结构破坏;最大热变形出现在矫正镜背面中心处,由外向内形成不等附加光程差,干扰探测器的成像效果;最大热应力出现在矫正镜前面中心处,得到最大热应力与激光辐照度间的线性关系曲线,为矫正镜热应力破坏提供预测参数。  相似文献   

13.
热补偿腔镜热变形的研究   总被引:3,自引:2,他引:1  
采用ANSYS有限元软件,系统模拟了强激光作用下的热补偿全反射硅镜的温度场分布和热变形.详细地研究了不同区域的热补偿和不同的热补偿功率大小对镜面变形峰谷值的影响.结果表明有效的热补偿对镜面变形峰谷值有很大的影响,在非光照区进行热补偿可以大大降低镜体的温度梯度,从而明显减小镜面变形的峰谷值.热补偿腔镜特别适合于机载或车载军用强激光器.  相似文献   

14.
圆形高斯镜平凹腔腔镜变形时激光模场分析   总被引:3,自引:2,他引:1  
把圆形高斯镜平凹腔自再现模的衍射积分方程转化为有限阶的矩阵方程,在平面输出镜呈高斯分布的镜面变形时,数值计算了激光场模式的场强、相位分布和模式本征值。结果表明,当变形量较小时,随着变形量的增加,镜面上光场的分布范围增大,也就说明模体积增大,但镜面光场仍保持拉盖尔-高斯光束基模特征,相位由平面慢慢变得凸起,远场分布变化不明显。当变形量较大时,光场分布开始发生畸变。从模式本征值的变化看,在一定的变形范围内,本征值下降不多,说明较小的变形量对激光损耗影响不大,仍能使激光较稳定输出。在圆形高斯镜平凹腔输出镜发生不大的高斯状变形的情况下,仍有维持输出高质量激光束的能力。  相似文献   

15.
 应用微扰理论,对微热变形腔的激光模式进行了理论计算与分析;给出了激光模式之间的耦合以及等效光束发散角与镜面变形量之间的关系。结果表明:镜面中心处热变形量越大,模式之间的耦合越强,激光腔模式发生畸变就越严重;当镜面中心处热变形量为0.5λ时,基模TEM0的中心光强将下降50%,其等效光束发散角将增大到镜面无变形时的2倍。  相似文献   

16.
强激光热管冷却镜的数值研究   总被引:2,自引:2,他引:0       下载免费PDF全文
 为消除强激光微沟道水冷镜冷却水压力和扰动对激光输出稳定性的影响和冷却水道对冷却水流量的限制,提出并设计了热管冷却镜。采用ANSYS有限元软件,模拟计算了相同结构下镜面热吸收为12 W/cm2,实心镜、微沟道水冷镜与热管冷却镜连续工作60 s下镜体温升和镜面变形量。计算结果表明:热管冷却镜镜面轴向位移最大峰谷值为0.109 4 μm,微沟道水冷镜最大峰谷值为0.845 μm,实心镜镜面最大峰谷值为1.33 μm,热管冷却镜对镜面变形改善显著。  相似文献   

17.
黄生荣  陈朝 《物理学报》2007,56(8):4596-4601
分析了纳秒级脉冲激光作用下GaN的激光诱导Zn的掺杂过程.利用简化的一维模型,给出一种比较直观的脉冲激光辐照下GaN/Al2O3材料温度分布的解析形式,得到了GaN材料表面温度与激光辐照时间的关系以及材料形变与深度的关系.在激光脉冲作用时,GaN材料表面的温度与辐照时间的平方根成正比.脉冲过后,材料温度分布梯度和热形变分布随深度发生变化,接近表面的温度梯度最大,热形变量也最大.而在连续脉冲作用时表面的温度呈锯齿状不断升高. 关键词: 激光诱导 2O3')" href="#">GaN/Al2O3 温度分布 热形变  相似文献   

18.
针对变形镜自身受强激光辐照后热变形问题,利用ANSYS的多物理模型建立了变形镜的热机械模型并进行了计算。针对受强激光辐照后变形镜吸收了部分热量并产生了0.9μm的变形量,根据该变形镜热畸变分布特征,提出了一种利用补偿镜对热畸变进行补偿的方法,即在一个薄型镜面背后用一些约束头固定构成补偿镜,放置在变形镜的后续光路中。约束头在补偿镜上的位置与极头在变形镜上的位置对应错开分布。对三种不同形状约束头的补偿镜进行了计算,补偿后综合变形量降低到0.35,0.32和0.40μm。利用光束传输因子(BPF)对理想光束通过补偿镜后的效果进行评价,结果表明通过三种补偿镜后BPF值从0.906提高到了0.966,0.971和0.957。进一步的计算表明,补偿效果受约束头尺寸的影响较小。  相似文献   

19.
报道了六硼化镧(LaB6)场发射尖锥的场发射性能。采用电化学腐蚀方法制作了LaB6场发射尖锥,并在10-2~10-7 Pa 的宽真空度范围内对单尖LaB6场发射二极管的发射特性进行了测试。发现残余气体电离产生的离子轰击对LaB6场发射阴极尖锥表面起到了离子清洗作用,使LaB6场发射尖锥在低真空工作后发射电流大幅度提高。离子轰击是一种适用于LaB6场发射阴极的激活处理方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号