首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the long-wavelength approximation, the dependence of electro-optical properties of superlattices on the mutual orientation of crystallographic axes forming the layer structure is studied. It is shown that electrooptical crystals can be used as a base for the production of layered periodic structures that are insensitive to the external electric action. The conditions for obtaining superlattices with a high electro-optical efficiency are found. The results of a numerical simulation can be used for the production of high-efficiency electro-optical materials with optimum parameters, which are required for the development of information transfer systems.  相似文献   

2.
GaAs/AlAs superlattices grown simultaneously on GaAs substrates with the (311)A and (311)B orientations have been studied by photoluminescence and high-resolution transmission electron microscopy with a Fourier analysis of images. A periodic interface corrugation is observed for (311)B superlattices. A comparison of the structure of (311)A and (311)B superlattices indicates that the corrugation occurs in both cases and its period along the $[01\overline 1 ]$ direction is equal to 3.2 nm. The corrugation is less pronounced in (311)B superlattices, wherein it exhibits an additional modulation (long-wavelength disorder) with the characteristic lateral size exceeding 10 nm. The vertical correlation of regions rich in GaAs and AlAs, which is well observed in (311)A superlattices, is weak in (311)B superlattices due to the occurrence of long-wavelength disorder. The optical properties of (311)B superlattices are similar to those of (100) ones and differ radically from those of (311)A superlattices. As distinct from (311)B, strong photoluminescence polarization anisotropy is observed for (311)A superlattices. It is shown that it is the interface corrugation rather than the crystallographic (311) surface orientation that determines the optical properties of (311)A corrugated superlattices with thin GaAs and AlAs layers.  相似文献   

3.
We report on a mechanism of dynamic dipolar coupling in magnetic superlattices via long-wavelength nonevanescent fields. In the spin excitation spectra of our heterophase stripe structures, such interactions mediate a singlet<-->doublet crossover in the frequency regime driven by the orientation of an external static field. This crossover is a new feature observed in collective behavior of superlattices, though there is some analogy of this phenomenon with birefringence taking place in optical superlattices. We envision applying the collective effects described here in microwave photonic devices.  相似文献   

4.
Fractal superlattices are composite, aperiodic structures comprised of alternating layers of two semiconductors following the rules of a fractal set. The scattering properties of polyadic Cantor fractal superlattices with variable lacunarity are determined. The reflection coefficient as a function of the particle energy and the lacunarity parameter present tunneling curves, which may be classified as vertical, arc, and striation nulls. Approximate analytical formulae for such curves are derived using the transfer matrix method. Comparison with numerical results shows good accuracy. The new results may be useful in the development of band-pass energy filters for electrons, semiconductor solar cells, and solid-state radiation sources up to THz frequencies.  相似文献   

5.
The effect of vertical ordering in superlattices of self-assembled Ge/Si(0 0 1) quantum dots was investigated by a combination of structural and optical characterizations via in situ reflection high-energy electron diffraction, transmission electron microscopy, atomic force microscopy and photoluminescence spectroscopy. We show that the vertical ordering observed in quantum-dot superlattices is characterized not only by the alignment of islands along the growth direction but also by a reduction of the critical thickness. The better the vertical ordering is, the more pronounced the reduction of the critical thickness will be. Such an evolution of the critical thickness could be explained by elastic strain fields induced by buried islands and propagated through the spacer layers. An important result issued from this work is the realization of superlattices in which dots can have equal size in all layers. On the other hand, experiments performed on the transformation of the island shape versus the spacer layer thickness suggest that preferential nucleation induced by surface roughness may be the main mechanism responsible for the vertical ordering observed in quantum-dot superlattices.  相似文献   

6.
姜艳  刘贵立 《物理学报》2015,64(14):147304-147304
碳纳米管作为最先进的纳米材料之一, 在电子和光学器件领域有潜在的应用前景, 因此引起了广泛关注. 掺杂、变形及形成超晶格为调制纳米管电子、光学性质提供了有效途径. 为了理解相关机理, 利用第一性原理方法研究了不同剪切形变下扶手椅型硼氮交替环状掺杂碳纳米管超晶格的空间结构、电子结构和光学性质. 研究发现, 剪切形变会改变碳纳米管的几何结构, 当剪切形变大于12%后, 其几何结构有较大畸变. 结合能计算表明, 剪切形变改变了掺杂碳纳米管超晶格的稳定性, 剪切形变越大, 稳定性越低. 电荷布居分析表明, 硼氮掺杂碳纳米管超晶格中离子键和共价键共存. 能带和态密度分析发现硼氮交替环状掺杂使碳纳米管超晶格从金属转变为半导体. 随着剪切形变加剧, 纳米管超晶格能隙逐渐减小, 当剪切形变大于12%后, 碳纳米管又从半导体变为金属. 在光学性能中, 剪切形变的硼氮掺杂碳纳米管超晶格的光吸收系数及反射率峰值较未受剪切形变的均减小, 且均出现了红移.  相似文献   

7.
孙伟峰  郑晓霞 《物理学报》2012,61(11):117301-117301
通过广义梯度近似的第一原理全电子相对论计算, 研究了不同界面类型InAs/GaSb超晶格的界面结构、电子和光吸收特性. 由于四原子界面的复杂性和低对称性, 通过对InAs/GaSb超晶格进行电子总能量和应力最小化来确定弛豫界面的结构参数. 计算了InSb, GaAs型界面和非特殊界面(二者交替)超晶格的能带结构和光吸收谱, 考察了超晶格界面层原子发生弛豫的影响.为了证实能带结构的计算结果, 用局域密度近似和Hartree-Fock泛函的平面波方法进行了计算. 对不同界面类型InAs/GaSb超晶格的能带结构计算结果进行了比较, 发现界面Sb原子的化学键和离子性对InAs/GaSb超晶格的界面结构、 能带结构和光学特性起着至关重要的作用.  相似文献   

8.
Excitonic molecules in GaAs/AlAs type-II superlattices are numerically investigated. In spite of large difference of electronic structures between type-II and type-I superlattices, variational calculations show that the configuration of particles is similar to that in type-I superlattices. This is because the layer width is smaller than the extent of excitonic wavefunctions in the direction parallel to the layers in the present superlattices.  相似文献   

9.
用Keating的价力场 (valenceforcefield)模型和蒙特卡罗方法计算了GaAs GaInNAsSb超晶格中键的分布、原子的精确位置以及应变 .用折叠谱法 (foldedspectrummethod)结合Williamson经验赝势法计算了GaAs GaInNAsSb超晶格应变条件下的电子结构 .讨论了N和Sb原子以及超晶格单分子层数对电子结构的影响 .发现导带底电子态在N原子周围的局域化减小了光跃迁矩阵元 ,从而影响了该超晶格的发光性能 .计算并讨论了超晶格的电子和空穴的有效质量 .  相似文献   

10.
We demonstrate a mesoscopic self-collimation effect in photonic crystal superlattices consisting of a periodic set of all-positive index 2D photonic crystal and homogeneous layers. We develop an electromagnetic theory showing that diffraction-free beams are observed when the curvature of the optical dispersion relation is properly compensated for. This approach allows us to combine slow-light regime together with self-collimation in photonic crystal superlattices presenting an extremely low filling ratio in air.  相似文献   

11.
Amorphous Si/SiO2 superlattices with periodicities between 2 and 5 nm have now been grown on (1 00) Si wafers by several different techniques: molecular beam epitaxy, magnetron sputtering, and plasma enhanced chemical vapor deposition (PECVD). With the first two methods little or no hydrogen is incorporated during growth and visible photo-luminescence (PL) is obtained at wavelengths from 520 to 800 nm. The shift in the PL peak position with Si layer thickness is consistent with quantum confined band-to-band recombination. Annealing the sputtered superlattices at temperatures up to 1100°C results in a very bright red PL that is similar in intensity to that observed in porous Si samples. For large numbers of periods (e.g., 425) the PL is strongly modulated in intensity owing to optical interference within the superlattice. Similar quantum confined, but defect induced, PL is also observed in the PECVD grown superlattices, where the amorphous Si layers are heavily hydrogenated.  相似文献   

12.
Multilayered samples with extremely narrow GaN quantum wells in an AlN host are synthesized via ammonia MBE. The parameters of the microstructure are determined by means of EXAFS spectroscopy, high-resolution electron microscopy, and low-angle scattering. Their relationship to the morphology of GaN/AlN superlattices is established. The influence of growth conditions and the thickness of superlattices on their optical properties and mixing in the near-boundary layers is established.  相似文献   

13.
Layerd FeNi-Cu-FeNi structures with a mutually perpendicular orientation of the easy axes in the FeNi layers are fabricated in ultrahigh vacuum, and the physical properties of these structures are investigated: ferromagnetic resonance, quasistatic magnetization reversal, and the Faraday rotation of the plane of polarization of a light wave. Zh. Tekh. Fiz. 67, 45–48 (November 1997)  相似文献   

14.
The Raman and photoluminescence spectra of short-period C/SiC superlattices produced by RF magnetron sputtering are investigated. The Raman data indicate that, in 35-period Sitall/Ni/[C/SiC] superlattices with the C and SiC effective thicknesses of 3.5 and 3 Å, respectively, subjected to postgrowth avalanche annealing, the carbon layers assume the structure of multilayer graphene with 3–5 graphene sheets per superlattice period. A method for the fabrication of graphene-like carbon structures on the basis of short-period superlattices grown by RF sputtering is suggested and implemented.  相似文献   

15.
The layer resolved magnetic moments and magnetic anisotropy energy of Fe/Co superlattices and multilayers with bcc (0 0 1) and (1 1 0) orientations obtained from first principles simulations are reported here. The magnetic moment of Fe atoms are found to depend on the geometry, coordination number and proximity to Co atoms, whereas that of Co remains almost constant in the superlattices and multilayers. Mixing of atoms at the interface resulted in enhanced Fe magnetic moment while that of Co is unaffected. The magnetic anisotropy energy in superlattices and multilayers are found to be larger than the corresponding values of bulk counterparts. Calculated easy axis of magnetization is in the plane for all superlattice compositions considered in the study, while that in multilayers, changes with crystalline orientation and thickness of Co layers.  相似文献   

16.
The optical properties of (GaAs)n/(AlAs)m superlattices in the infra-red spectral region have been studied. The confinement of optical phonons has been observed in both GaAs and AlAs layers of superlattices under investigation. The superlattice modes caused by the coupling between LO phonons and collective intersubband excitations have been found in doped superlattices. Macroscopic and microscopic calculations have been used for the analysis of experimental results. Good agreement with experiment has been obtained.  相似文献   

17.
Golovenchits  E. I.  Khannanov  B. Kh.  Sanina  V. A. 《JETP Letters》2020,111(12):709-714

The effect of optical pumping and applied magnetic field on the characteristics of ferromagnetic layers in one-dimensional superlattices is studied. At low enough temperatures, these layers correspond to phase separation domains in RMn2O5 and R0.8Ce0.2Mn2O5 multiferroics. The formation of such domains occurs owing to the charge ordering of Mn3+ and Mn4+ ions and to the finite probability for eg electrons to tunnel between these pairs of ions. The volume occupied by such superlattices is rather small, and they can be treated as isolated ferromagnetic semiconductor heterostructures, spontaneously formed in the host crystal. The sequences of ferromagnetic resonances related to the superlattice layers in Eu0.8Ce0.2Mn2O5 are studied. The characteristics of these resonances give information on the properties of such layers. For the first time, it is demonstrated that the optical pumping gives rise to a new metastable state of superlattices, which can be recovered by the magnetic field cycling to the state existing before the optical pumping. It is found that the superlattices recovered by the magnetic field exist up to temperatures higher than those in as-grown crystals.

  相似文献   

18.
Using first-principles calculations we investigate the influence of interface modification and layer thicknesses on the optical properties of Si/SiO2 superlattices. Four interface models with different dangling-bond passivation are considered. The results demonstrate confinement effects not only for the fundamental band gaps but also for the optical properties. While for a large Si layer thickness of the Si/SiO2 superlattices the interface dependence is small, the calculations show a significant structure dependence for thin Si layers. © 2007 Elsevier Science. All rights reserved.  相似文献   

19.
A theoretical comparison of the electronic structures of long-period (about 300 Å) NGaAs×NAℓGaAs GaAs/Aℓ0.3Ga0.7As superlattices grown along the [111] direction and superlattices grown along the [001] direction is presented. Almost all qualitative features of the theoretical results are in good agreement with experiments by Hayakawa et al. The observed optical transition enhancement in the [111]-oriented quantum-well structures is caused by the topological difference in the superlattices, and is only partly due to the fact that the heavy holes in the [111] superlattices have larger transverse effective masses, and therefore have larger two-dimensional valence band densities of states.  相似文献   

20.
We investigated the field dependences of the magnetization and magnetoresistance of superlattices [Co(t x, Å)/Cu(9.6 Å)]30 prepared by magnetron sputtering, differing in the thickness of cobalt layers (0.3 Å ≤ t Co ≤ 15 Å). The optical and magnetooptical properties of these objects were studied by ellipsometry in the spectral region of hω= 0.09–6.2 eV and with the help of the transverse Kerr effect (hω= 0.5–6.2 eV). In the curves of an off-diagonal component of the tensor of the optical conductivity of superlattices with t Co = 3–15 Å, a structure of oscillatory type (“loop”) was detected in the ultraviolet region, resulting from the exchange splitting of the 3d band in the energy spectrum of the face-centered cubic structure of cobalt (fcc Co). Based on magnetic experiments and measurements of the transverse Kerr effect, we found the presence of a superparamagnetic phase in Co/Cu superlattices with a thickness of the cobalt layers of 3 and 2 Å. The transition from superlattices with solid ferromagnetic layers to superparamagnetic cluster-layered nanostructures and further to the structures based on Co and Cu (t Co = 0.3–1 Å) with a Kondo-like characteristics of the electrical resistivity at low temperatures is analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号