首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, a mediator‐less and compartment‐less glucose/air enzymatic biofuel cell (BFC) was introduced into microfluidic paper‐based analytical devices (μ‐PADs) with gold nanoparticles (AuNPs) and platinum nanoparticles (PtNPs)‐modified paper electrode as the anodic and cathodic substrate, respectively, to implement self‐powered, sensitive, low‐cost and simple DNA detection. As a further development of the analytical equipment, an all‐solid‐state paper supercapacitor (PS) was designed and integrated into the BFC for current amplification, and a terminal digital multi‐meter detector (DMM) was introduced for the current detection. A highly sensitive DNA sensor was fabricated by covalently immobilizing the capture DNA in the AuNPs‐modified anode. The nanoporous gold conjugated with bienzymes, glucose oxidase and horseradish peroxidase, which were used as electrochemical labels. The electrons generated at the anode flow through an external circuit to the PtNPs‐modified cathode that catalyzed the reduction of oxygen with the participation of protons. In addition, the generated current could be collected and stored by the PS. After that, the PS was automatically shorted under the control of a switch to output an instantaneously amplified current, which could be sensitively detected by the terminal DMM. At the optimal conditions, the paper‐based analytical platform can detect DNA at the femtomole level. This approach also shows excellent specificity toward single nucleotide mismatches.  相似文献   

2.
Nanometer sized materials have been shown to possess excellent chemical and electrochemical catalytic properties. In this work, a gold nanoparticle (AuNP) modified indium tin oxide (ITO) electrode was employed for investigating its electro-catalytic property. AuNP was deposited on the 3-aminopropyltriethoxysilane (APTES) modified ITO electrode by self-assembly, and was characterized by scanning electron microscopy and cyclic voltammetry. Although the electrochemical reaction of dopamine was very sluggish on the ITO/APTES electrode, it was significantly enhanced after AuNP deposition. The cyclic voltammogram exhibited apparent dependence on the surface coverage of 11 nm AuNPs, which could be rationalized by different modes of mass diffusion. Among the different sizes of AuNP investigated, the lowest anodic peak potential was observed on 11 nm AuNP. However, the potential was still about 50 mV more positive than that obtained on a bulk gold electrode of similar geometry. It is therefore concluded that there is no nanometer size effect of AuNP modified ITO on the electrochemistry of dopamine.  相似文献   

3.
In this work, a novel electrochemical method for nitrite detection by using functionalized platinum nanoparticles (PtNPs) is proposed. Firstly, a gold electrode is immobilized with 4-(2-aminoethyl)benzenamine. Then, PtNPs are modified with 5-[1, 2]dithiolan-3-yl-pentanoic acid [2-(naphthalene-1-ylamino)-ethyl]amide (DPAN). Consequently, in the presence of nitrite ions, Griess reaction occurs between 4-(2-aminoethyl)benzenamine on the electrode and DPAN on PtNPs, thus PtNPs are localized onto the electrode surface. So, PtNPs-electrocatalyzed reduction of H2O2 can be achieved to correlate the electrochemical signal with the concentration of nitrite ions. The linear concentration range can be as wide as 10–1,000 μM, while the detection limit is as low as 5 μM. The proposed method has been also successfully applied to the detection of nitrite with the local lake water, and the result is well consistent with that obtained by UV-visible spectrophotometric method. So, this method has potential use for monitoring nitrite in drinking water supplies in the future.  相似文献   

4.
A glassy carbon electrode (GCE) is modified with platinum nanoparticle (PtNPs) decorated multiwalled carbon nanotube (MWCNT). The modified electrode is applied for the determination of ceftriaxone (CFX) in the presence of lidocaine. Different methods were used to characterize the surface morphology of the modified electrode. The electrochemical behavior of CFX was investigated at GCE, MWCNT/GCE and PtNPs/MWCNT/GCE. A factorial-based response-surface methodology was used to find out the optimum conditions with minimum number of experiments. Under the optimized conditions, oxidation peak currents increased linearly with CFX concentration in the range of 0.01–10.00 μM with a detection limit of 9.01 nM. The results prove that the modified electrode is also suitable for the determination of CFX in pharmaceutical and clinical preparations.  相似文献   

5.
A polythiophene thin film was fabricated on gold nanoparticle (AuNP)-deposited indium-tin-oxide (ITO) electrodes with electropolymerization, whereas AuNPs were predeposited on the ITO surface. A photocurrent via photoexcited polythiophene increased with AuNPs which was attributed to the localized surface plasmon resonance. Investigation of the AuNP-density dependence on the relative enhancement of photocurrent revealed the maximum effect at 14% of AuNP-density, while 68% of AuNP-density exhibited smaller photocurrent than the polythiophene electrode without AuNPs. We have revealed that the effects of AuNPs saturate in the fairly low density region, and that the excess AuNPs even in the range of submonolayer resulted in the decrement of photocurrents.  相似文献   

6.
This paper reported the enzymatic deposition of Au nanoparticles (AuNPs) on the designed 3-mercapto-propionic acid/glucose oxidase/chitosan (MPA/GOD/Chit) modified glassy carbon electrode and its application in glucose detection. Chit served as GOD immobilization matrix and interacted with MPA through electrostatic attraction. AuNPs, without nano-seeds presented on the electrode surface, was produced through the glucose oxidase catalyzed oxidation of glucose. The mechanism of production of AuNPs was confirmed to be that enzymatic reaction products H(2)O(2) in the solution reduce gold complex to AuNPs. The characterizations of the electrode modified after each assembly step was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Scanning electron microscopy showed the average particle size of the AuNPs is 40nm with a narrow particle size distribution. The content of AuNPs on the electrode surfaces was measured by differential pulse stripping voltammetry. The electrochemical signals on voltammogram showed a linear increase with the glucose concentration in the range of 0.010-0.12mM with a detection limit of 4μM. This provided a method to the determination of glucose.  相似文献   

7.
Porous gallium nitride (PGaN) layers were fabricated by metal-assisted photochemical etching (MaPCE) using electrodeposited platinum nanoparticles (PtNPs) or gold nanoparticles (AuNPs) as catalysts. After identification of a suitable negative potential and appropriate cyclic voltammetry (CV) conditions, high-density PtNPs or AuNPs were deposited onto a planar GaN substrate. Based on the concrete numerical values of energy levels, the generation, transfer and consumption of electrons and holes, and the assumption that localized galvanic cells are formed, an etching mechanism was proposed which may provide theoretical guidance for future work on etching of GaN and other semiconductor materials.  相似文献   

8.
Yang MH  Qu FL  Lu YS  Shen GL  Yu RQ 《Talanta》2008,74(4):831-835
Platinum nanoparticles (PtNPs) attached to glass slide surface was successfully prepared by using a simple in situ chemical reduction method. In this method, a approximately 10nm gold layer was first sputtered uniformly onto the glass slide surface, PtNPs could be grown directly on the gold layer by immersing the glass slide into the grown solution containing H(2)PtCl(4) and ascorbic acid. The gold layer sputtered uniformly serves as "seed" for the following growth of PtNPs and high dense of PtNP modified film can be prepared. Control experiment without the gold layer found no obvious formation of PtNPs indicating the importance of the "seed". The electrocatalytic effect of the PtNP film was investigated with the detection of hydrogen peroxide and for the fabrication of biosensors. Glucose oxidase was selected and directly electrodeposited onto the PtNPs modified surface. The resulting biosensor has a fast response time (<10s) with wide linear range (5x10(-6) to 2x10(-2)). The fabrication method is simple, convenient and can be used for the mass fabrication of biosensors. The present preparation method of PtNPs modified film could be used for the preparation of other metal nanoparticle and find electrochemical applications as well as for optical uses.  相似文献   

9.
A gold nanoparticles (AuNPs) modified indium tin oxide (ITO) film coated glass electrode was prepared via a novel electrochemical deposition technique. The UV‐visible spectrum and SEM indicated that the AuNPs on ITO electrode surface were spherical shape and quite symmetric distributed. The modified electrode exhibited excellent catalytic activity for the oxidation of morphine (MO). At optimal experimental condition, the oxidation current was responsive with the MO concentrations ranging from 8.0×10?7 to 1.6×10?5 M, the detection limit was 2.1×10 –7 M. The modified electrode also exhibited high stability and reproducibility. The average recoveries of detection MO in human urine were ranged between 91.95% and 92.23%, and the RSD was less than 3.68% (n=5).  相似文献   

10.
In this paper, an electrochemical aptamer sensor was proposed for the highly sensitive detection of mercury ion (Hg2+). Carbon nanofiber (CNF) was prepared by electrospinning and high‐temperature carbonization, which was used for the loading of platinum nanoparticles (PtNPs) by the hydrothermal method. The Pt@CNF nanocomposite was modified on the surface of carbon ionic liquid electrode (CILE) to obtain Pt@CNF/CILE, which was further decorated by gold nanoparticles (AuNPs) through electrodeposition to get Au/Pt@CNF/CILE. Self‐assembling of the thiol‐based aptamer was further realized by the formation of Au‐S bond to get an electrochemical aptamer sensor (Aptamer/Au/Pt@CNF/CILE). Due to the specific binding of aptamer probe to Hg2+ with the formation of T‐Hg2+‐T structure, a highly sensitive quantitative detection of Hg2+ could be achieved by recording the changes of current signal after reacting with Hg2+ within the concentration range from 1.0 × 10?15 mol/L to 1.0 × 10?6 mol/L and the detection limit of 3.33 × 10?16 mol/L (3σ). Real water samples were successfully analyzed by this method.  相似文献   

11.
采用绿色环保的还原剂聚二烯丙基二甲基氯化铵,制备石墨烯(GR)/聚二烯丙基二甲基氯化铵(PD-DA)/铂纳米粒子(PtNPs)复合材料,在此基础上制备了GR/PDDA/PtNPs复合修饰电极,并采用透射电镜、电化学等方法对GR/PDDA/PtNPs进行表征.以pH=8.5的B.R缓冲溶液为支持电解质,采用循环伏安法研究...  相似文献   

12.
Seed-mediated growth of gold nanoparticles on glassy carbon (GC) surfaces was developed. The field emission scanning electron microscopy (FE-SEM) and electrochemical characterization confirmed the effective attachment of gold nanoparticles on GC surface with such a wet-chemical method. The as-prepared gold nanoparticles attached glassy carbon electrode (Au/GCE) presented excellent catalytic ability toward the oxidation of nitrite. Compared with bare GCE and planar gold electrode, the Au/GCE obviously decreased the overpotential of nitrite oxidation and improved the peak current. The catalytic current was found to be linearly proportional to the nitrite concentration in the range of 1 x 10(-5) - 5 x 10(-3) M, with a detection limit of 2.4 x 10(-6) M. The Au/GCE was successfully applied to the electrochemical determination of nitrite in a real wastewater sample, showing excellent stability and anti-interference ability.  相似文献   

13.
This work designed a simple, sensitive, and low-cost immunosensor for the detection of protein marker by using a carbon sphere/gold nanoparticle (CNS/AuNP) composite as an electrochemical label. The nanoscale carbon spheres, prepared with a hydrothermal method by using glucose as raw material, were used to load AuNPs for labeling antibody by electrostatic interaction, which provided a feasible pathway for electron transfer due to the remarkable conductivity. The disposable immunosensor was constructed by coating a polyethylene glycol (PEG) film on a screen-printed carbon-working electrode and then immobilizing capture antibody on the film. With a sandwich-type immunoassay format, the analyte and then the CNS/AuNP-labeled antibody were successively bound to the immunosensor. The bound AuNPs were finally electro-oxidized in 0.1 M HCl to produce AuCl(4)(-) for differential pulse voltammetric (DPV) detection. The high-loading capability of AuNPs on CNS for the sandwich-type immunorecognition led to obvious signal amplification. By using human immunoglobulin?G (IgG) as model target, the DPV signal of AuNPs after electro-oxidized at optimal potential of +1.40?V for 40?s showed a wide linear dependence on the logarithm of target concentration ranging from 10?pg mL(-1) to 10?ng mL(-1). The detection limit was around 9?pg mL(-1). The immunosensor showed excellent analytical performance with cost effectivity, good fabrication reproducibility, and acceptable precision and accuracy, providing significant potential application in clinical analysis.  相似文献   

14.
通过对螺旋型铂铱电极表面进行化学腐蚀和电化学沉积铂纳米粒子实现电极表面的重建和优化,研究了螺旋型铂铱电极在不同腐蚀时间和电沉积时间下的形貌及对过氧化氢(H2O2)的催化活性.对表面重建的工作电极涂覆氧化酶和半透膜,制备出了铂纳米粒子/葡萄糖氧化酶/环氧聚氨酯酶电极,并将其用作葡萄糖传感器的工作电极.传感器计时电流检测结果表明,表面重建后的酶电极传感器对葡萄糖的检测范围扩大为2~45 mmol/L,优于裸铂铱酶电极传感器,电流响应值和灵敏度得到明显提升,同时传感器还具有良好的稳定性和选择性.  相似文献   

15.
利用纳米金( AuNPs)和L-半胱氨酸( Cys)修饰金电极( AuE),得到对Cu2+具有灵敏响应的电化学修饰电极( Cys/AuNPs/AuE)。在Cu2+存在时对头孢氨苄进行水解,通过方波伏安法测定水解液中剩余Cu2+的浓度,从而间接测得头孢氨苄的含量。对金电极的修饰条件、头孢氨苄的水解条件等进行了优化。在pH 4.5的HAc-NaAc缓冲液中,头孢氨苄在Cu2+存在时于沸水浴中水解25 min后,溶液中剩余Cu2+在Cys/AuNPs/AuE上有良好的电化学响应,还原峰电流差与头孢氨苄的浓度分别在0.0058~0.12μmol/L和0.12~2.9μmol/L范围内呈良好的线性关系,检出限为1.9 nmol/L(S/N=3)。用本方法对鸡肉样品中的头孢氨苄残留进行测定,结果表明,本方法简便快速、灵敏度高,适用于鸡肉等食品样品中头孢氨苄残留的测定。  相似文献   

16.
The gold submicroparticles (AuSMPs) electrodeposited on indium tin oxide (ITO) were used to develop an electrochemical method for determining the concentration of CO in gas phase. We demonstrated that the peak current for CO oxidation in cyclic voltammetry (CV) is proportionally dependent on the gas phase concentration of CO. Experimental results are in good agreements with the theoretical predictions over a wide concentration regime, providing a solid foundation for the quantitatively sensing of CO at AuSMPs/ITO electrodes.  相似文献   

17.
铂纳米颗粒在汽车行业中被广泛用作汽车尾气催化剂。随着铂纳米颗粒在工业生产中的广泛应用,它在环境中广泛分布并可能从植物累积进入食物链中。因此,建立一种在农产品中的定量分析方法是至关重要的。以酶消解的前处理方法结合单颗粒-电感耦合等离子体质谱法(Single particle ICP-MS,SP-ICP-MS)测定农产品中纳米铂颗粒(PtNPs)粒径分布及颗粒数量浓度。通过优化前处理提取条件,当Macerozyme R-10酶为10 mg、柠檬酸缓冲溶液浓度为5 mmol/L、提取时间36 h时,农产品中PtNPs提取效果较高。PtNPs粒径检出限为20 nm,颗粒浓度检出限为5×105 particle/L,铂颗粒浓度回收率在(81±3)%~(91±4)%,加标后平均粒径(41±3)~(47±2)nm,与50 nm PtNPs标准溶液粒径接近。方法操作简单、检出限低、准确度高,适用于农产品中PtNPs定量分析,为客观评价农产品铂纳米毒性效应提供可靠的分析技术。  相似文献   

18.
We describe a highly sensitive and selective amperometric sensor for the determination of nitrite. A glassy carbon electrode was modified with a composite made from gold nanoparticles (AuNPs) and sulfonated graphene (SG). The modified electrode displays excellent electrocatalytic activity in terms of nitrite oxidation by giving much higher peak currents (at even lower oxidation overpotential) than those found for the bare electrode, the AuNPs-modified electrode, and the SG-modified electrode. The sensor has a linear response in the 10 μM to 3.96 mM concentration range, a very good detection sensitivity (45.44 μA mM?1), and a lower detection limit of 0.2 μM of nitrite. Most common ions and many environmental organic pollutants do not interfere. The sensor was successfully applied to the determination of nitrite in water samples, and the results were found to be consistent with the values obtained by spectrophotometry.
Figure
A highly sensitive amperometric sensor for nitrite using a glassy carbon electrode modified with gold nanoparticles/sulfonated graphene (AuNPs/SG) composites is presented  相似文献   

19.
A simple and sensitive platinum nanoparticles/poly(hydroxymethylated-3,4-ethylenedioxylthiophene)nanocomposite(PtNPs/PEDOT-MeOH) modified glassy carbon electrode(GCE) was successfully developed for the electrochemical determination of quercetin.Scanning electron microscopy and energy dispersive X-ray spectroscopy results indicated that the PtNPs were inserted into the PEDOTMeOH layer.Compared with the bare GCE and poly(3,4-ethylenedioxythiophene)(PEDOT) electrodes,the PtNPs/PEDOT-MeOH/GCE modified electrode exhibited a higher electrocatalytic ability toward the oxidation of quercetin due to the synergic effects of the electrocatalytic activity and strong adsorption ability of PtNPs together with the good water solubility and high conductivity of PEDOT-MeOH.The electrochemical sensor can be applied to the quantification of quercetin with a linear range covering0.04-91 μmol L~(-1) and a low detection limit of 5.2 nmol L~(-1).Furthermore,the modified electrode also exhibited good reproducibility and long-term stability,as well as high selectivity.  相似文献   

20.
纳米铂修饰玻碳电极对邻苯二酚的电化学氧化及测定   总被引:2,自引:0,他引:2  
应用循环伏安法研究了邻苯二酚在纳米铂修饰玻碳(PtNPs/GC)电极上的电化学氧化行为。实验表明,PtNPs/GC电极对邻苯二酚有很强的电催化作用,其伏安扫描氧化峰电流随着温度的升高而增大,但氧化峰电位略有负移。常温下,邻苯二酚能自发在电极表面发生聚合反应,生成具有导电性的聚合膜,其催化氧化电流与邻苯二酚浓度在1.0×10-6mol/L~5.0×10-5mol/L范围内呈良好的线性关系,检出限为2.9×10-7mol/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号