首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
由于锂离子电池安全问题的严重性,它的热性质一直受到很大重视.对电池的热性质表征,传统方法主要包括单组分的热重(TG)、示差扫描(DSC)、加速量热法(ARC)等测量.由于体积较大,对于整池的热物性研究主要依赖于加速量热仪或充电/放电过程的温度检测.  相似文献   

2.
张中良  张武寿 《合成化学》2007,15(B11):251-251
本文通过对Ni—MH电池充放电微量热及原位电化学等参量监测实验结果进行分析研究,建立包括可逆和不可逆过程的电池充放电电压和热耗散的模型。根据以热力学对电池体系在充放电过程的分析和目前国内不少学者从电池电极过程,充放电进程中电压和热耗散所受影响大小及其与时间的关系,获得了相关数理模型方程:  相似文献   

3.
本文通过对Ni-MH电池充放电微量热及原位电化学等参量监测实验结果进行分析研究,建立包括可逆和不可逆过程的电池充放电电压和热耗散的模型.根据以热力学对电池体系在充放电过程的分析和目前国内不少学者从电池电极过程,充放电进程中电压和热耗散所受影响大小及其与时间的关系,获得了相关数理模型方程:E=Ef Ei,其中Ef=Eθ RT/F1n([M(H)]0 I/Ft)为理想电位,Ei=ktf为非理想电位,以及包括非电化学耗散Wch=g m×exp(k2t)的数理方程如下:  相似文献   

4.
李保旗  杨汉西 《电化学》1997,3(3):277-281
报道了以尖晶石型二氧化猛为正极,1mol/L^-1Zn(ClO4)2的碳酸丙烯酯为电解液构成Zn-MnO2二次电池体系的充放电性质和反应机理分析。结果表明,这一体系的充放电过程表现为Zn在λ-MnO2中的电化学嵌入和脱嵌反应。  相似文献   

5.
热电池是一种热激活贮备式电池,由于其优良的贮存稳定性、放电可靠性等特点,广泛应用于多种军用武器的内部电源。为了满足当前不同军用武器装备的需求,热电池的发展趋于在提高电化学性能的同时实现小型化、微型化。热电池电化学性能的提高主要取决于正极材料的发展,目前对现有正极材料的优化改性和新型正极材料的开发是提高热电池性能的主要方法。本文从合成和改性方法的角度综述了近年来硫化物、氯化物、氟化物热电池正极材料的研究进展,并对其材料特性和放电性能进行了综合评估。最后,基于热电池特殊的应用场景,从热稳定性、放电电压、电导率等方面对热电池正极材料未来的发展方向进行了总结与展望。  相似文献   

6.
锂离子电池及其相关技术的发展对容量、充放电倍率特性、循环寿命和加工适用性等提出了更高的要求。目前最常用的负极和正极材料与电解液相容性差,充放电过程中结构变化大易剥落导致电池循环稳定性差。鉴于碳纳米管大的长径比、良好的导电性能、优异的力学性能和化学惰性,很适于用作导电剂提升电池性能。本文主要研究了碳纳米管复合材料用作导电剂,并制作成品锂离子电池检测其性能。主要取得了两项实用成果:(1)获得碳纳米管复合导电剂的制备方法,而且采用简单的机械搅拌就可以将复合导电剂进行有效均匀分散,易于进行规模化应用;(2)用碳纳米管复合材料作导电剂,与目前常用的导电剂导电碳黑相比,锂离子电池循环寿命提高一倍以上。  相似文献   

7.
热谱重建法及其在热动力学研究中的应用   总被引:5,自引:1,他引:5  
在热动力学研究中,大多数实验是在热导式热量计中进行的。由于量热系统的热惯性,记录得到的热谱会出现“失真”,为了正确方便地分析被研究过程的动力学性质,必须对所得热谱进行改造或重建。本文系统地提出了一种新的重建法,即热谱重建法。实验结果表明,该法可广泛应用于热动力学研究。  相似文献   

8.
张树高 《电化学》2000,6(1):40-44
以有机热解碳(石墨)为原料,用喷雾热蒸发法制备了用于锂离子电池负极的碳膜,用循环伏安法和恒电流充放电法测试了所获碳膜的电化学性能,测试结果表明,在第一循环周期中存在一个还原峰,该还原峰对应在电极表面形成固体电解质中间相膜;当充放电电流大小适合时,容量和X值都较大。基于这些实验结果,可以认为所获得的碳膜作用负极以相对测试其他正极材料电化学性能。  相似文献   

9.
热动力学研究的新进展   总被引:8,自引:0,他引:8  
根据变化过程的放(吸)热速率研究过程动力学规律并融热化学与化学动力学于一体的分支学科称为热动力学。本文回顾了国内外学者在各种量热体系中研究热动力学的进展情况,着重介绍了最近五年中热动力学在化学反应、酶促反应和生物代谢过程研究中的应用,并预测了热动力学在未来十年中的发展趋势。  相似文献   

10.
利用工艺简单,成本低廉的共沉淀法制得CoOOH,并用作非水性锂-氧气电池阴极催化剂。通过恒流充放电、线性伏安扫描(LSV)和电化学阻抗(EIS)测试研究了电极的电化学性能。结果表明:由于CoOOH能够明显提高氧气还原反应(ORR)的催化活性,与未使用CoOOH的电极相比较,使用CoOOH为催化剂的电极首次放电容量高达5 093 mAh·g-1,提高了1.7倍。电池的充电过电压降低了约460 mV,充电可逆性得到增强,充放电可逆性提高,使得循环性能得到显著改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号