首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clathrate hydrates have appeared as promising icy materials as the radical, high-spin molecule, and even electron clathrate hydrates are found. In particular, dielectron clathrate hydrates are expected to develop as structural units for a novel class of icy magnetic materials because of not only possible spin coupling interaction, but also very sensitive response to electric field of the loosely bound electrons. However, electric field responses concerning the magnetic properties of such hydrates have not been reported so far. In this work, three representative dielectron clathrate hydrate model clusters (e2@4668BB, e2@51262BB, and e2@4668AB) were considered for the exploration of their magnetic spin coupling properties, electron distributions, and energy responses to applied electric field. The results calculated at the density functional theory level show that the energies and electron spin coupling properties of these dielectron clathrate hydrate clusters are quite sensitive to applied electric field, presenting intriguing variations. Most importantly, applied electric field can regulate the strength of spin coupling between two trapped electrons, and even could realize the magnetic interconversion of such dielectron cluster structures between antiferromagnetic and paramagnetic or diamagnetic characteristics. Clearly, the intriguing variations should be attributed to the diffuse character, special mobility and polarizable properties of such trapped electrons, and especially the susceptible redistributions of two electrons (including the electron cloud shape and distance between two electron centers) to the electric field. This work opens up the possibility of designing novel icy magnetic materials with sensitive electric field responses of the magnetic properties.  相似文献   

2.
At relatively high temperatures (200–270K), clathrate hydrate cages achieve their full crystallographic symmetry because of time averaging of different cage configurations which exist because of disorder in the water molecule orientations. The average orientation of guest molecules in the cages can be obtained from the NMR spectrum, in case of spin 1/2 nuclei from the nuclear shielding tensor, in case of spin 1 nuclei from the quadrupole coupling tensor. Guest molecules studied include carbon dioxide, carbonyl sulphide, methyl-d3 fluoride, methyl-d3 chloride, methyl-d3 bromide, ethane-d6, acetylene-d2 in the structure I hydrates, and methyl-d3 iodide in the structure II hydrate.For the slightly flattened large cage of structure I hydrate, the guest molecules rotate so that the plane which contains the long axis of the molecule is confined to be nearer to the equatorial plane of the cage than the axial regions.Since the structure II large cage has tetrahedral symmetry on time average, it exerts no orienting effect on guest molecules.NRCC no. 32722.  相似文献   

3.
Vibrational spectra and thermodynamic properties of ices and the cubic structure I (CS-I) clathrate hydrate have been studied by the lattice dynamics method. The phonon density of states for the empty hydrate framework and for xenon hydrate have been determined; the vibrational frequencies of the guest molecules in large and small cavities have been found. The stability of the hydrate with respect to the external pressure at low temperatures and its thermodynamic stability at temperatures around 0°C have been studied. It has been found that the empty hydrate framework is unstable in certain temperature and pressure regions. A definite degree of occupation of the large cavities by the guest molecules is necessary for the hydrate to become stable. It has been found that there is a maximum of the critical temperature at which the hydrate exists, which is a function of the external pressure.Dedicated to Dr. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.  相似文献   

4.
In the present study, we report the results of a systematic investigation of cage-like water structures using the first-principles calculations. These results show that, in the case of methane hydrate, the following nucleation mechanism can be revealed. The formation of small water cavities filled with methane is the first step of the formation of methane hydrate. It is not necessary to occupy all dodecahedral cages by guest molecules. After that small cavities start to form the H-bonding network with surrounding water molecules and a small number of water molecules is enough for the formation of a stable hydrogen-bonding network. The structural information contained in such nuclei is conserved in the forming crystal. Moreover, the presence of a methane molecule between small cages is also important to prevent the adhesion of cavities. It found that the ozone molecule can also stabilize the small cage since the value of the interaction energy between the ozone guest and the water host framework is very close to that obtained for the methane case. However, ozone affects the structure of large cavities and hence, the second guest is necessary to stabilize the hydrate structure.  相似文献   

5.
In this study, we investigate the crystal structures and phase equilibria of butanols+CH4+H2O systems to reveal the hydroxy group positioning and its effects on hydrate stability. Four clathrate hydrates formed by structural butanol isomers are identified with powder X‐ray diffraction (PXRD). In addition, Raman spectroscopy is used to analyze the guest distributions and inclusion behaviors of large alcohol molecules in these hydrate systems. The existence of a free OH indicates that guest molecules can be captured in the large cages of structure II hydrates without any hydrogen‐bonding interactions between the hydroxy group of the guests and the water‐host framework. However, Raman spectra of the binary (1‐butanol+CH4) hydrate do not show the free OH signal, indicating that there could be possible hydrogen‐bonding interactions between the guests and hosts. We also measure the four‐phase equilibrium conditions of the butanols+CH4+H2O systems.  相似文献   

6.
Molecular dynamics simulations of the pure structure II tetrahydrofuran clathrate hydrate and binary structure II tetrahydrofuran clathrate hydrate with CO(2), CH(4), H(2)S, and Xe small cage guests are performed to study the effect of the shape, size, and intermolecular forces of the small cages guests on the structure and dynamics of the hydrate. The simulations show that the number and nature of the guest in the small cage affects the probability of hydrogen bonding of the tetrahydrofuran guest with the large cage water molecules. The effect on hydrogen bonding of tetrahydrofuran occurs despite the fact that the guests in the small cage do not themselves form hydrogen bonds with water. These results indicate that nearest neighbour guest-guest interactions (mediated through the water lattice framework) can affect the clathrate structure and stability. The implications of these subtle small guest effects on clathrate hydrate stability are discussed.  相似文献   

7.
The thermal conductivity of methane hydrate is an important physical parameter affecting the processes of methane hydrate exploration,mining,gas hydrate storage and transportation as well as other applications.Equilibrium molecular dynamics simulations and the Green-Kubo method have been employed for systems from fully occupied to vacant occupied sI methane hydrate in order to estimate their thermal conductivity.The estimations were carried out at temperatures from 203.15 to 263.15 K and at pressures from 3 to 100 MPa.Potential models selected for water were TIP4P,TIP4P-Ew,TIP4P/2005,TIP4P-FQ and TIP4P/Ice.The effects of varying the ratio of the host and guest molecules and the external thermobaric conditions on the thermal conductivity of methane hydrate were studied.The results indicated that the thermal conductivity of methane hydrate is essentially determined by the cage framework which constitutes the hydrate lattice and the cage framework has only slightly higher thermal conductivity in the presence of the guest molecules.Inclusion of more guest molecules in the cage improves the thermal conductivity of methane hydrate.It is also revealed that the thermal conductivity of the sI hydrate shows a similar variation with temperature.Pressure also has an effect on the thermal conductivity,particularly at higher pressures.As the pressure increases,slightly higher thermal conductivities result.Changes in density have little impact on the thermal conductivity of methane hydrate.  相似文献   

8.
The tert-butyl alcohol (TBA) is the most hydrophobic of the simple alcohol and by itself does not form a clathrate hydrate with water. A genuine clathrate hydrate is synthesized by exposing a gaseous guest to solid TBA + H2O powders. Here, we examine three consecutive spectroscopic approaches of (1) the occurrence of a "free" OH stretching band (nu(OH)) signal of TBA molecules representing an absence of hydrogen bonding between the host water and guest TBA, (2) a tuning effect for creating fresh cages via the rearrangement of the host-water lattice, and finally (3) the existence of a critical guest concentration (CGC) that appears only when the TBA concentration is dilute. The present findings from this simple three-step approach can be extended to other alcoholic guest species with the specific modifications to provide the new insights into inclusion chemistry.  相似文献   

9.
刘纾曼 《化学通报》2012,(2):126-137
过去的CO2置换甲烷水合物的微观机理研究,主要集中在客体分子(CH4、CO2)之间的交换、占据状态,孤立地研究分解过程或生成过程,忽视主体-客体之间的作用、主体分子(H2O)的空位辅助和客体分子的多重竞争通道。本文基于水合物分解的过冷水及其水空位辅助,以及水合物生成的串滴链及其客体分子竞争的研究,进一步评论水合物CH4-CO2置换的双重机理。然后,对微观机理的动态性和未来研究的相关问题进行讨论。通过综述和评论,文章得出以下初步结果:过冷水通过水空位推动客体分子的跳跃、扩散,实现置换过程的自组装;CO2分子在分解前沿形成一个有序结构的CO2串滴链,其动态性伴随水的组织到获取包合物笼的结构,以及非晶形包合物转变成晶形包合物的生长过程;CO2和CH4在中晶穴中必然产生竞争,并且存在多种竞争类型;成核过程中,不稳定簇导致竞争结构,且有多重竞争通道。最后,结果表明水合物的CH4-CO2置换机理具有双重性,即主体分子的空位辅助和客体分子的竞争,是分解过程和生成过程的自然统一。  相似文献   

10.
The synthesis and characterization of a series of three‐dimensional (3D) Hofmann‐like clathrate porous metal–organic framework (MOF) materials [Fe(bpac)M(CN)4] (M=Pt, Pd, and Ni; bpac=bis(4‐pyridyl)acetylene) that exhibit spin‐crossover behavior is reported. The rigid bpac ligand is longer than the previously used azopyridine and pyrazine and has been selected with the aim to improve both the spin‐crossover properties and the porosity of the corresponding porous coordination polymers (PCPs). The 3D network is composed of successive {Fe[M(CN)4]}n planar layers bridged by the bis‐monodentate bpac ligand linked in the apical positions of the iron center. The large void between the layers, which represents 41.7 % of the unit cell, can accommodate solvent molecules or free bpac ligand. Different synthetic strategies were used to obtain a range of spin‐crossover behaviors with hysteresis loops around room temperature; the samples were characterized by magnetic susceptibility, calorimetric, Mössbauer, and Raman measurements. The complete physical study reveals a clear relationship between the quantity of included bpac molecules and the completeness of the spin transition, thereby underlining the key role of the π–π stacking interactions operating between the host and guest bpac molecules within the network. Although the inclusion of the bpac molecules tends to increase the amount of active iron centers, no variation of the transition temperature was measured. We have also investigated the ability of the network to accommodate the inclusion of molecules other than water and bpac and studied the synergy between the host–guest interaction and the spin‐crossover behavior. In fact, the clathration of various aromatic molecules revealed specific modifications of the transition temperature. Finally, the transition temperature and the completeness of the transition are related to the nature of the metal associated with the iron center (Ni, Pt, or Pd) and also to the nature and the amount of guest molecules in the lattice.  相似文献   

11.
Lattice dynamical simulations of noble gas hydrate structuresⅠandⅡhave been performed. Potential energies were investigated to study the influence of guest species on the stability of the hydrate structure.Results show that when the diameter of inclusion molecules is between 3(?)and 4.2(?),such as Ar and Kr,the critical role of the 5~(12)cage in the stabilization of hydrates becomes effective.For Xe hydrates SⅠand SⅡ,with the help of lattice dynamical calcnlations,the modes attributions are identified directly.We proposed the resonant effect of the fingerprint frequency at about 7 meV and 10 meV which arise from the coupling of Xe molecules in the 5~(12)cage with the host lattice.  相似文献   

12.
甲烷水合物导热系数是甲烷水合物勘探、开采、储运以及其他应用过程中一个十分重要的物理参数.我们采用平衡分子动力学(EMD)方法Green-Kubo理论计算温度203.15~263.15K、压力范围3~100MPa、晶穴占有率为0~1的sI甲烷水合物的导热系数,采用的水分子模型包括TIP4P、TIP4P-Ew、TIP4P-FQ、TIP4P/2005、TIP4P/Ice.研究了主客体分子、外界温压条件等对甲烷水合物导热性能的影响.研究结果显示甲烷水合物的低导热性能由主体分子构建的sI笼型结构决定,而客体分子进入笼型结构后,使得笼型结构导热性能增强,同时进入笼型结构的客体分子越多,甲烷水合物导热性能越强.研究结果还显示在高温区域(T〉TDebye/3)内不同温度作用下,所有sI水合物具有相似的导热规律.压力对导热系数有一定影响,尤其是在较高压力条件下,压力越高,导热系数越大.而在不同温度和不同压力作用过程中,密度的改变对导热系数的增大或减小几乎没有影响.  相似文献   

13.
The diversity of spin crossover (SCO) complexes that, on the one hand, display variable temperature, abruptness and hysteresis of the spin transition, and on the other hand, are spin‐sensitive to the various guest molecules, makes these materials unique for the detection of different organic and inorganic compounds. We have developed a homochiral SCO coordination polymer with a spin transition sensitive to the inclusion of the guest 2‐butanol, and these solvates with (R)‐ and (S)‐alcohols demonstrate different SCO behaviours depending on the chirality of the organic analyte. A stereoselective response to the guest inclusion is detected as a shift in the temperature of the transition both from dia‐ to para‐ and from para‐ to diamagnetic states in heating and cooling modes respectively. Furthermore, the Mössbauer spectroscopy directly visualizes how the metallic centres in a chiral coordination framework differently sense the interaction with guests of different chiralities.  相似文献   

14.
Recently, we have reported a metal-macrocycle framework (MMF) with five enantiomerically paired molecular binding pockets that exhibit site-selective guest arrangement on the nano-channel surface in soaking experiments using a variety of guest molecules. The guest inclusion is based largely on molecular exchange between solvent molecules such as CH3CN and guest molecules on the surface. Herein, we report that the molecular arrangement on the nano-channel surface varies with size, shape and/or chemical properties of functional groups of guests, mono-substituted benzene derivatives, such as benzonitrile, acetophenone and nitrobenzene. In their inclusion complexes, polar nitrile, acetyl and nitro groups serve as molecular anchors to a macrocyclic cavity through hydrogen bonding. Notably, benzonitrile and benzenesulphonic acid bind only to one pair of enantiomeric binding pockets. Such a highly site-selective binding would enable further multi-component surface modifications in the MMF.  相似文献   

15.
A hydrogen molecule entrapped in the cages of icy hydrogen hydrate is confined in host water framework and thus behaves unlike pure solid or liquid hydrogen. The gamma-irradiated hydrogen radicals are for the first time observed from ESR and solid-state MAS 1H NMR spectra to stably exist in the icy hydrate channels without any collapse of the host framework, confirming the chemical shift consistency of ionized hydrogen derivatives. We discuss the confined icy hydrate channels, which can act as potential storage sites for simultaneously imprisoning both molecular and ionized hydrogen and further as icy nanoreactors.  相似文献   

16.
We have synthesized a microporous magnetic framework that contained supertetrahedral decametallic cobalt clusters as nodes and 4‐(tris(hydroxymethyl)methyl)pyridine ligands as linkers in a NaCl‐like network. This complex shows canted antiferromagnetism with spin‐glass behavior. After the removal of the guest molecules, the spin‐canting and spin‐glass behaviors are maintained. The permanent porosity was evaluated by N2‐adsorption measurements. This complex mainly shows a hydrophobic nature, as validated by MeOH‐ and water‐adsorption measurements, which is consistent with the grand canonical Monte Carlo (GCMC) theoretical simulation.  相似文献   

17.
18.
常见客体分子对笼型水合物晶格常数的影响   总被引:1,自引:0,他引:1  
Natural gas hydrates are considered as ideal alternative energy resources for the future, and the relevant basic and applied research has become more attractive in recent years. The influence of guest molecules on the hydrate crystal lattice parameters is of great significances to the understanding of hydrate structural characteristics, hydrate formation/decomposition mechanisms, and phase stability behaviors. In this study, we test a series of artificial hydrate samples containing different guest molecules (e.g. methane, ethane, propane, iso-butane, carbon dioxide, tetrahydrofuran, methane + 2, 2-dimethylbutane, and methane + methyl cyclohexane) by a low-temperature powder X-ray diffraction (PXRD). Results show that PXRD effectively elucidates structural characteristics of the natural gas hydrate samples, including crystal lattice parameters and structure types. The relationships between guest molecule sizes and crystal lattice parameters reveal that different guest molecules have different controlling behaviors on the hydrate types and crystal lattice constants. First, a positive correlation between the lattice constants and the van der Waals diameters of homologous hydrocarbon gases was observed in the single-guest-component hydrates. Small hydrocarbon homologous gases, such as methane and ethane, tended to form sI hydrates, whereas relatively larger molecules, such as propane and iso-butane, generated sⅡ hydrates. The hydrate crystal lattice constants increased with increasing guest molecule size. The types of hydrates composed of oxygen-containing guest molecules (such as CO2 and THF) were also controlled by the van der Waals diameters. However, no positive correlation between the lattice constants and the van der Waals diameters of guest molecules in hydrocarbon hydrates was observed for CO2 hydrate and THF hydrate, probably due to the special interactions between the guest oxygen atoms and hydrate "cages". Furthermore, the influences of the macromolecules and auxiliary small molecules on the lengths of the different crystal axes of the sH hydrates showed inverse trends. Compared to the methane + 2, 2-dimethylbutane hydrate sample, the length of the a-axis direction of the methane + methyl cyclohexane hydrate sample was slightly smaller, whereas the length of the c-axis direction was slightly longer. The crystal a-axis length of the sH hydrate sample formed with nitrogen molecules was slightly longer, whereas the c-axis was shorter than that of the methane + 2, 2-dimethylbutane hydrate sample at the same temperature.  相似文献   

19.
The aim of present paper is to study the stability of (argon + large guest molecules) structure H clathrate-hydrates by using molecular dynamics simulations and with employing the COMPASS force field to consider the molecular interactions. The simulations are performed by embedding the structure H clathrate-hydrates in a simulation cell under isobaric-isothermal (NPT) conditions. The obtained equilibrium lattice parameters are compared with the experimental data, where a good consistency is observed. The results show that the size and dipole moment of the guest molecules enclosed in the hydrate cages play the main role in the interactions between the guest molecules and the water molecules, which constitute the surrounding walls of the hydrate cage and these interactions would stabilize the hydrate structure. The characteristics of the clathrate-hydrate structure are analyzed by evaluating the radial distribution function, where the agreement between the results obtained in this work and other similar theoretical and experimental investigations validates the simulation procedure and related interpretations.  相似文献   

20.
To provide improved understanding of guest–host interactions in clathrate hydrates, we present some correlations between guest chemical structures and observations on the corresponding hydrate properties. From these correlations it is clear that directional interactions such as hydrogen bonding between guest and host are likely, although these have been ignored to greater or lesser degrees because there has been no direct structural evidence for such interactions. For the first time, single‐crystal X‐ray crystallography has been used to detect guest–host hydrogen bonding in structure II (sII) and structure H (sH) clathrate hydrates. The clathrates studied are the tert‐butylamine (tBA) sII clathrate with H2S/Xe help gases and the pinacolone + H2S binary sH clathrate. X‐ray structural analysis shows that the tBA nitrogen atom lies at a distance of 2.64 Å from the closest clathrate hydrate water oxygen atom, whereas the pinacolone oxygen atom is determined to lie at a distance of 2.96 Å from the closest water oxygen atom. These distances are compatible with guest–water hydrogen bonding. Results of molecular dynamics simulations on these systems are consistent with the X‐ray crystallographic observations. The tBA guest shows long‐lived guest–host hydrogen bonding with the nitrogen atom tethered to a water HO group that rotates towards the cage center to face the guest nitrogen atom. Pinacolone forms thermally activated guest–host hydrogen bonds with the lattice water molecules; these have been studied for temperatures in the range of 100–250 K. Guest–host hydrogen bonding leads to the formation of Bjerrum L‐defects in the clathrate water lattice between two adjacent water molecules, and these are implicated in the stabilities of the hydrate lattices, the water dynamics, and the dielectric properties. The reported stable hydrogen‐bonded guest–host structures also tend to blur the longstanding distinction between true clathrates and semiclathrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号