首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amorphous silicon-nitride thin films a-Si:N:H were obtained by plasma enhanced chemical vapour deposition (PECVD) method from SiH4+NH3 at 13.56 MHz. The process parameters were chosen to obtain the films of properties suitable for optoelectronic and mechanical applications. FTIR analysis of a-Si:N:H films indicated the presence of numerous hydrogen bonds (Si-H and N-H) which passivate structural defects in multicrystalline silicon and react with impurities. The morpho-logical investigations show that the films are homogeneous. The deposition of a-Si:N:H layers leads to the decrease in friction coefficient of used substrates. Optical properties were optimised to obtain the films of low effective reflectivity, large energy gap Eg from 2.4 to 2.9 eV and refractive index in the range of 1.9 to 2.2. Reduction of friction coefficient for monocrystalline silicon after covering with a-Si:N:H films was observed: from 0.25 to 0.18 for 500 cycles.  相似文献   

2.
运用AMPS- ID程序研究了a-SiC:H/a-Si1-rGer:H/a-Si:H薄膜太阳能电池的光电特性.分析了a-SiC:H/a-Si1-xGes:H/a-Si:H薄膜太阳能电池短路电流、断路电压、填充因子和光电转化效率随Ge成分(或含量)x和a-Si1-sGes:H层厚度的变化.计算结果表明x=0.1和a-Si1-xGex:H厚度h=340 nm时,转化效率达到最大值 9.19%.另外,讨论了各种因素对太阳能电池性能的影响.  相似文献   

3.
The AMPS-ID program is used to investigate electrical and optical properties of the thin film solar cell of a-SiC:H/a-Si1-xGex:H/a-Si:H. The short circuit current density, open circuit voltage, fill factor and efficiency of the solar cell are investigated. The efficiency of the solar cell is 9.19% as thickness of a-Si1-xGex:H is 340 nm with Ge content x=0.1. In addition, we also discuss the factors which affect solar cell efficiency.  相似文献   

4.
a-Si:H/c-Si 异质结太阳电池 J-V 曲线的 S-Shape 现象   总被引:1,自引:0,他引:1       下载免费PDF全文
钟春良  耿魁伟  姚若河 《物理学报》2010,59(9):6538-6544
通过异质结界面分析与 AMPS 模拟计算研究了 a-Si:H/c-Si 异质结太阳电池在低温工作、a-Si:H 层低掺杂、高价带补偿以及高界面态时光态 J-V 曲线出现 S-Shape 现象的物理过程,总结了 S-Shape 现象的物理原因.分析结果表明,当空穴输运受到界面势垒的限制时,空穴在 c-Si 界面附近聚集,能带重新分配,c-Si 耗尽区的电场减小,更多的电子从 c-Si 准中性区反转至 c-Si 界面及耗尽区与空穴复合,复合速率显著增大,光电流的损失显著增大,光态 J-V< 关键词: 模拟 异质结太阳电池 a-Si:H/c-Si 异质结  相似文献   

5.
Hydrogenated amorphous silicon (a-Si:H) thin films have been considered for use in solar cell applications because of their significantly reduced cost compared to crystalline bulk silicon. However, their overall efficiency and stability are lower than that of their bulk crystalline counterpart. Limited work has been performed on simultaneously solving the efficiency and stability issues of a-Si:H. Previous work has shown that surface texturing and crystallization on a-Si:H thin film can be achieved through a single-step laser processing, which can potentially alleviate the disadvantages of a-Si:H in solar cell applications. In this study, hydrogenated and dehydrogenated amorphous silicon thin films deposited on glass substrates were irradiated by KrF excimer laser pulses and the effect of hydrogen on surface morphologies and microstructures is discussed. Sharp spikes are focused only on hydrogenated films, and the large-grained and fine-grained regions caused by two crystallization processes are also induced by presence of hydrogen. Enhanced light absorptance is observed due to light trapping based on surface geometry changes of a-Si:H films, while the formation of a mixture of nanocrystalline silicon and original amorphous silicon after crystallization suggests that the overall material stability can potentially improve. The relationship between crystallinity, fluence and number of pulses is also investigated. Furthermore, a step-by-step crystallization process is introduced to prevent the hydrogen from diffusing out in order to reduce the defect density, and the relationship between residue hydrogen concentration, fluence and step width is discussed. Finally, the combined effects show that the single-step process of surface texturing and step-by-step crystallization induced by excimer laser processing are promising for a-Si:H thin-film solar cell applications.  相似文献   

6.
This paper investigates laser scribing of a-Si:H layers from the film side with a ns pulsed UV laser for thin-film solar modules. We compared the contact resistance for several scribing methods and find that a low contact resistance is only achieved for double scribing methods (i.e. scribing the same line twice). Furthermore, we find that for such double scribing methods the alignment between the laser spots of the first and second sub-scribes is critical for good-quality contacts. In order to analyze these results in more detail, we examined the morphology and chemical composition at the surface of the laser lines using scanning electron microscopy, X-ray photoelectron spectroscopy and secondary ion mass spectrometry. From this analysis, we conclude that a good alignment between the first and second scribes results in less re-deposition of silicon in the form of SiO2 on the surface, which explains differences in contact resistance found for the various scribing methods. As a good alignment between the two sub-scribes is difficult to obtain, these double scribing methods are not attractive for industrial application. We developed a new scribing method for which alignment between the two scribes is not critical, and demonstrate that we can obtain high-quality contacts with this method.  相似文献   

7.
Thin film polycrystalline silicon films grown on glass substrate were irradiated with an infrared continuous wave laser for defects annealing and/or dopants activation. The samples were uniformly scanned using an attachment with the laser system. Substrate temperature, scan speed and laser power were varied to find suitable laser annealing conditions. The Raman spectroscopy and Suns-V oc analysis were carried out to qualify the films quality after laser annealing. A maximum enhancement of the open circuit voltage V oc of about 100?mV is obtained after laser annealing of as-grown polysilicon structures. A strong correlation was found between the full width half maximum of the Si crystalline peak and V oc. It is interpreted as due to defects annealing as well as to dopants activation in the absorbing silicon layer. The maximum V oc reached is 485?mV after laser treatment and plasma hydrogenation, thanks to defects passivation.  相似文献   

8.
Laser-controlled ablation of individual layers in glass/TCO/thin-film silicon/metal structures is essential for cell isolation and monolithic interconnection in thin-film silicon photovoltaic technologies. More recently, the potential application of laser scribing techniques for the development of photovoltaic matrix position sensors based on a-Si:H has generated much activity, requiring an excellent control in laser-generated patterns obtained by direct material ablation.This work is aimed to determine process parametric windows for a-Si:H thin-film ablation processes using UV ns laser sources in thin-film a-Si:H-based devices. The study is focussed on direct writing techniques using UV sources. We present ablation threshold measurements and process quality assessment using advanced optical microscopy techniques. Moreover only fully commercial laser sources in the ns regime has been used, bearing in mind that thin film based photovoltaic technologies are still demanding further reduction in production costs and, nowadays, ultrafast sources are beyond their scope both for the investment and running cost of those equipments.  相似文献   

9.
The super chamber, a separated UHV reaction-chamber system has been developed. A conversion efficiency of 11.7% was obtained for an a-Si solar cell using a high-quality i-layer deposited by the super chamber, and a p-layer fabricated by a photo-CVD method.As a new material, amorphous superlattice-structure films were fabricated by the photo-CVD method for the first time. Superlattice structure p-layer a-Si solar cells were fabricated, and a conversion efficiency of 10.5% was obtained.For the fabrication of integrated type a-Si solar cell modules, a laser pattering method was investigated. A thermal analysis of the multilayer structure was done. It was confirmed that selective scribing for a-Si, TCO and metal film is possible by controlling the laser power density. Recently developed a-Si solar power generation systems and a-Si solar cell roofing tiles are also described.  相似文献   

10.
The possibility to fabricate high-mobility polysilicon TFTs by nanosecond pulsed laser crystallization of unhydrogenated amorphous Si thin films has been investigated. Two types of lasers have been used: a large area ( 1 cm2) single ArF excimer laser pulse and a small diameter ( 100 m) frequency-doubled Nd:YAG laser beam, working in the scanning regime. Processed films have been characterized in detail by different optical and microscopic techniques. Device performances indicate that the best results are achieved with the excimer laser leading to high mobility values (up to 140 cm2/Vs) which are much larger than in polysilicon TFTs fabricated onto the same quartz substrates by low-temperature thermal (630° C) crystallization of amorphous Si films (fe55 cm2/Vs).  相似文献   

11.
在对不同晶相比硅薄膜的实验研究的基础上,利用有效介质理论估算了这种两相材料的光吸 收系数、迁移率寿命乘积及带隙宽度等参量,计算机模拟了不同结晶比硅薄膜电池的伏安特 性及光谱响应;结果为随着本征层微晶成分的增多,电池的开路电压逐渐减小,短路电流逐 渐增大,本征层的最佳厚度逐渐增大,填充因子有降低的趋势,电池的效率随晶相比的增大 而减小. 电池的光谱响应曲线表明,随晶相比的增大电池的长波响应明显提高. 根据这些模 拟结果,分析讨论了在考虑Lambertian背反射的情况下,非晶/微晶叠层电池的底电池采用 晶相比为40%—50%的两相硅薄膜材料做本征层是最佳选择. 关键词: 两相硅薄膜 太阳能电池 计算机模拟  相似文献   

12.
罗文俊  于涛  邹志刚 《物理》2006,35(6):497-501
TiO2半导体光电极的发现引发了科学界大量关于半导体光电极的研究.目前,对TiO2的掺杂,对新材料的探索以及对异质结的深入研究,目的都是为了提高半导体光电极的太阳光利用效率.敏化太阳能电池的出现是半导体光电极在实用化方面迈进的一大步.文章简述半导体光电极的研究历史,并对该领域将来的研究方向进行了展望。  相似文献   

13.
Thin layers of conducting glass (SnO2:F) of 3 ohm per square sheet resistance were chemically deposited on borosilicate glass for potential applications in SIS solar cells. The layers exhibit 90% optical transmission at the solar maximum (0.5 μm). In an optical investigation of the conducting glass at room temperature, a direct allowed transition at 4.1 eV was observed. Indirect allowed transition was also observed with an energy gap of 2.65 eV and an assisting phonon of 0.05 eV. These observations were supported by reflectance data obtained by an integrating sphere. A technique of making ohmic contacts with SnO2:F layers is also described.  相似文献   

14.
罗文俊  于涛  邹志刚 《物理》2006,35(06):0-0
TiO2半导体光电极的发现引发了科学界大量关于半导体光电极的研究.目前,对TiO2的掺杂,对新材料的探索以及对异质结的深入研究,目的都是为了提高半导体光电极的太阳光利用效率.敏化太阳能电池的出现是半导体光电极在实用化方面迈进的一大步.文章简述半导体光电极的研究历史,并对该领域将来的研究方向进行了展望.  相似文献   

15.
16.
In this paper, we investigated the mechanism of crystallization induced by femtosecond laser irradiation for an amorphous Si (a-Si) thin layer on a crystalline Si (c-Si) substrate. The fundamental, SHG, THG wavelength of a Ti:Sapphire laser was used for the crystallization process. To investigate the processed areas we performed Laser Scanning Microscopy (LSM), Transmission Electron Microscopy (TEM) and Imaging Pump-Probe measurements. Except for 267 nm femtosecond laser irradiation, the crystallization occurred well. The threshold fluences for the crystallization using 800 nm and 400 nm femtosecond laser irradiations were 100 mJ/cm2 and 30 mJ/cm2, respectively. TEM observation revealed that the crystallization occurred by epitaxial growth from the boundary surface between the a-Si layer and c-Si substrate. The melting depths estimated by Imaging Pump-Probe measurements became shallower when the shorter wavelength was used.  相似文献   

17.
Research activities in the field of III-V solar cells are reviewed. III-V compound semiconductors are used for space solar cells, concentrator solar cells, and in thermophotovoltaic generators. The epitaxial growth of ternary and quaternary material by MOVPE and LPE allows us to realize various band gaps. Multi-junction solar cells with different band gaps are necessary to obtain efficiencies larger than 30%. Recent results of the III-V solar cell research at the Fraunhofer ISE are presented. A mechanically stacked GaAs/GaSb tandem concentrator solar cell achieved an efficiency of 31.1% under 100×AM1.5d. An efficiency of 23% for a two-terminal concentrator module (486 cm2) with Fresnel lenses has been measured under realistic outdoor conditions. Received: 1 March 1999 / Accepted: 28 March 1999 / Published online: 24 June 1999  相似文献   

18.
The time dependences of the key characteristic of a-Si:H solar cells over daylight hours are theoretically simulated. The model is used to calculate the time dependences for an arbitrary geographic latitude in the interval 30°–60° and arbitrary day of the year. The calculated results are illustrated for a geographic latitude of 45° and equinox. The relative variations in the characteristics of the a-Si:H solar cells are valid with a relatively high accuracy for the solar cells based on alternative semiconductors provided that their efficiency ranges form 7 to 20%.  相似文献   

19.
Fabrication of semiconductor microcrystallites is of much current interest in the rapidly advancing field of artificial superlattices and quantum well structures. We wish to report on the utilization of the microporosity in Vycor® brand porous glass to produce microcrystallites of semiconductors of groups II–VI, IV–VI and layered transition metal chalcogenides. Based on electronic spectral evidence, quantum confinement effects have been observed in some of the semiconductors when confined spatially within the pores of the porous glass. Nonlinear optical applications of the porous glass doped with semiconductor microcrystallites will be briefly discussed.  相似文献   

20.
β-NaYF4:Er3+(10%) microprisms, synthesized using a hydrothermal method, were applied to the back of a thin film hydrogenated amorphous silicon (a-Si:H) solar cells to investigate response to sub-band gap near-infrared irradiation. Currents of 0.3 μA and 0.01 μA were measured during single-illumination with 60 mW (80 mW/cm2) 980 nm and 1560 nm diode lasers, respectively, due to frequency upconversion (UC). Under co-excitation by 60 mW 980 nm and 100 mW 1560 nm lasers, a current improvement to 0.54 μA was obtained, resulting from enhancements in red emission. The finding indicates that co-excitation with multiple wavelengths accessible to UC materials is very effective in enhancing the efficiency of solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号