首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The inclusion complexes of beta-cyclodextrin (beta-CD) with l-tyrosine (l-TYN) were investigated by using spectrophotometers. The absorption and fluorescence enhancement occurs with beta-CD and l-TYN forms 1:1 inclusion complex. The unusual blue shift of hydroxyl ion in the beta-CD medium confirms OH groups present in the interior part of the beta-CD cavity and -COOH group present in the upper part of the beta-CD cavity. A mechanism is proposed to explain inclusion process. The inclusion interaction was examined and the thermodynamic parameters of inclusion process DeltaG, DeltaH and DeltaS were determined. The results indicated that the inclusion process was an exergonic and spontaneous process. Stable solid inclusion complexes were established and characterized by FT-IR, scanning electron microscope (SEM) methods.  相似文献   

2.
The fluorescence enhancement of berberine (Berb) as a result of complex with beta-cyclodextrin (beta-CD) is investigated. The association constants of alpha-CD and beta-CD with Berb are 60 and 137 M(-1) at 20 degrees C in pH 7.20 aqueous solution. Effects of temperature on the forming inclusion complexes of beta-CD with Berb have been examined through using fluorescence titration. Enthalpy and entropy values calculated from fluorescence data are -33.7 kJ mol(-1) and 74.3 J x mol(-1) K(-1) respectively. It was found that the dielectric constant of beta-CD cavity is about 24 in a rough analogy with absolute alcohol. These results suggest that the extrusion of 'high energy water' molecules from the cavity of beta-CD and hydrophobic interaction upon the inclusion complex formation are the main forces of the inclusion reaction. Effect of pH on the association of beta-CD with Berb was also studied. Mechanism of the inclusion of beta-CD with Berb is further studied by absorption and NMR measurements. Results show that beta-CD forms a 1:1 inclusion complex with Berb.  相似文献   

3.
In aqueous solutions, inclusion complexation of Fe(III) tetrakis(4-sulfonatophenyl)porphyrin (FeTSPP) with alpha-cyclodextrin (alpha-CD), beta-CD, gamma-CD, and heptakis(2,3,6-tri-O-methyl)-beta-CD (TM-beta-CD) has been examined by means of absorption and induced circular dichroism spectroscopy. FeTSPP has been found to form inclusion complexes with beta-CD, gamma-CD, and TM-beta-CD in pH 3.2 buffers. At pH 10.1, where FeTSPP self-associates to form an oxo-bridged dimer, FeTSPP also forms inclusion complexes with alpha-CD, beta-CD, gamma-CD, and TM-beta-CD. The stoichiometries of the CD-FeTSPP inclusion complexes are 1:1, except for TM-beta-CD in pH 10.1 buffers where its 1:1 inclusion complex associates with TM-beta-CD to form a 2:1 inclusion complex at high TM-beta-CD concentrations. Equilibrium constants of FeTSPP for the formation of the 1:1 inclusion complexes have been evaluated for beta-CD, gamma-CD, and TM-beta-CD. Induced circular dichroism spectra of FeTSPP in alpha-CD and beta-CD solutions exhibit a signal pattern (a negative sign) that is different from those in acidic and basic solutions containing gamma-CD and that in basic solution containing TM-beta-CD, suggesting different inclusion modes towards FeTSPP.  相似文献   

4.
The effect of beta-cyclodextrin (beta-CD) on the mononuclear heterocyclic rearrangement of the (Z)-phenylhydrazone of 3-benzoyl-5-phenyl-1,2,4-oxadiazole (1) in aqueous borate buffer at pH = 9.6 has been analyzed at temperatures ranging from 293.15 to 313.15 K. The trend of the absorption spectra of 1 as a function of time has been accounted for with the formation of two different 1:1 complexes between beta-CD and 1, the first, "unreactive" complex being formed faster than the "reactive" one. The occurrence of negative activation enthalpy values for the studied interconversion evidences the kinetic relevance of inclusion processes. Computational models elaborated using the MM2 molecular mechanics force field give an idea of the relative importance of the different complexes, additionally helping us to formulate a suitable reaction scheme.  相似文献   

5.
Several subphthalocyanine derivatives that contain an alkoxo substituent as an axial ligand (RO-Subpc, R = 9-anthracenemethyl, benzyl, phenyl, 3,5-dimethylbenzyl, 3,5-dimethylphenyl, 4-methylbenzyl, and 4-methylphenyl) were synthesized. The formation of inclusion complexes of RO-Subpc with beta-CD in DMSO and at the toluene/water interface was investigated by UV/Vis absorption spectroscopy, induced circular dichroism (ICD), and nuclear magnetic resonance (NMR) measurements. Interfacial tension measurements suggested that beta-CD adsorbed as a monolayer at the toluene/water interface and probably orientated towards the toluene phase with its primary face. The 1:1 composition of beta-CD.RO-Subpc inclusion complexes was confirmed in DMSO and at the toluene/water interface for BzO-Subpc, PhO-Subpc, MeBzO-Subpc, and MePhO-Subpc. A 2:1 inclusion complex of AnO-Subpc formed in DMSO. The observed ICD spectra of beta-CDRO-Subpc inclusion complexes are discussed with respect to molecular modeling and the simulation based on Tinoco-Kirkwood theory. Interestingly, the ICD spectra of beta-CD.BzO-Subpc and beta-CD.MeBzO-Subpc inclusion complexes exhibited a negative sign in DMSO and a positive sign at the toluene/water interface. This reversal of the ICD sign strongly suggests a difference in the structure of the inclusion complexes: beta-CD at the interface formed the inclusion complex with its primary face, whereas the secondary face of beta-CD bound favorably to RO-Subpc in DMSO.  相似文献   

6.
The mechanism of the inclusion of tropaeolin OO (TPOO) and beta-cyclodextrin (beta-CD) has been studied by spectrophotometry. The inclusion depth of the guest molecule in the host molecule was demonstrated by infrared spectrometry. Effect of the pH, concentrations of beta-CD, solvents and ionic strength on the inclusion of TPOO and beta-CD were examined. The result showed that TPOO reacts with beta-CD to form a 1:1 host-guest complex with an apparent formation constant of 1.50 x 10(3) l mol(-1). The thermodynamic parameters of inclusion reaction, DeltaG degrees , DeltaH degrees and DeltaS degrees were obtained.  相似文献   

7.
The inclusion behavior of piroxicam (PX) with beta-cyclodextrin (beta-CD), hydroxypropyl-beta-cyclodextrin (HP-beta-CD), and carboxymethyl-beta-cyclodextrin (CM-beta-CD) was investigated by using steady-state fluorescence and nuclear magnetic resonance (NMR) technique. The various factors affecting the inclusion process were examined in detail. The remarkable fluorescence emission enhancement upon addition of CDs suggested that cyclodextrins (CDs) were most suitable for inclusion of the uncharged species of PX. The stoichiometry of the PX-CDs inclusion complexes was 1:1, except for beta-CD where a 1:2 inclusion complex was formed. The formation constants showed the strongest inclusion capacity of beta-CD. NMR showed the inclusion mode of PX with CDs.  相似文献   

8.
The interactions between alpha- and beta-cyclodextrin (alpha-/beta-CD) and an equimolar mixture of octyltriethylammonium bromide (OTEAB) and sodium perfluorooctanoate (SPFO) were studied by 1H and 19F NMR, surface tension, conductivity, and dynamic light scattering. It was shown that beta-CD could destroy the mixed micelles of OTEAB-SPFO by selective inclusion of SPFO. As beta-CD was added, the system was observed to undergo a process like this: beta-CD preferentially included SPFO to form 1:1 beta-CD/SPFO complexes. As the inclusion of SPFO was almost saturated, the mixed micelles broke and all OTEAB was released and exposed to aqueous surroundings. Then 1:1 beta-CD/OTEAB and 2:1 beta-CD/SPFO complexes significantly formed simultaneously. Contrary to beta-CD, alpha-CD exhibited selective inclusion to OTEAB and only weak association with SPFO. alpha-CD could also destroy the mixed micelles of OTEAB-SPFO; however, the demicellization ability of alpha-CD is much smaller than that of beta-CD. These conclusions were also well supported by the calculations of binding constants and DeltaG degrees . Different from the complexes of CD/conventional surfactants, the complexes of beta-CD/SPFO or alpha-CD/OTEAB formed by selective inclusion of CD in the mixed cationic-anionic surfactants may have contributed to the surface activity of the aqueous mixtures. The complexes of alpha-CD/OTEAB showed much more significant contribution to the surface activity than that of the complexes of beta-CD/SPFO.  相似文献   

9.
The interaction of progesterone with beta-cyclodextrin (beta-CD) was studied by differential pulse polarography. The aim of the present work was to study the effect of beta-CD on the electrochemical behavior of progesterone in aqueous solution and also to analyze the molecular interactions involved in formation of the inclusion complex. The complex with stoichiometry of 1:1 was thermodynamically characterized. In addition, steered molecular dynamics (SMD) was used to investigate the energetic properties of formation of the inclusion complex along four different pathways (reaction coordinates), considering two possible orientations. From multiple trajectories along these pathways, the potentials of mean force for formation of the beta-CD progesterone inclusion complex were calculated. The energy analysis was in good agreement with the experimental results. In the beta-CD progesterone inclusion complex, a large portion of the steroid skeleton is included in the beta-CD cavity. The lowest energy was found when the D-ring of the guest molecule is located near the secondary hydroxyls of the beta-CD cavity. In the most probable orientation, one intermolecular hydrogen bond is formed between the O of the C-20 keto group of the progesterone and a secondary hydroxyl of the beta-CD.  相似文献   

10.
[reaction: see text] Skeleton-modified cyclodextrin (CD) derivatives, in which an alpha-(1,4)-glucosidic bond is converted into a beta-(1,4)-glucosidic bond, were conveniently synthesized by cleavage of a single glucosidic bond in permethylated and 2,6-di-O-methylated alpha- and beta-CDs and subsequent recyclization via the trichloroacetoimidate intermediates. The selective cleavage of an alpha-(1,4)-glucosidic bond of permethylated alpha- and beta-CDs was accomplished by stirring in 30% aq HClO(4) at 25 degrees C to give the corresponding maltohexaose and maltoheptaose derivatives, respectively. The cleavage of a glucosidic bond of hexakis(3-O-benzyl-2,6-di-O-methyl)-alpha-CD was successfully carried out in a mixed 60% aq HClO(4) and 1,4-dioxane solution (1:20). In the case of heptakis(3-O-benzyl-2,6-di-O-methyl)-beta-CD, the solvent-free reaction with p-toluenesulfonic acid was found to be effective for selective cleavage of one glucosidic bond. The permethylated beta-CD derivative with a beta-(1,4)-glucosidic bond (4b) exhibited higher inclusion ability toward sodium m-nitrobenzoate than the parent permethylated beta-CD, while these hosts showed the same inclusion ability toward sodium p-nitrobenzoate. On the other hand, the beta-(1,4)-type permethylated alpha-CD derivative 4a exhibited lower inclusion ability toward sodium p- and m-nitrobenzoates than the parent permethylated alpha-CD. Interestingly, host molecules 4a and 4b showed inclusion selectivity for sodium m-nitrobenzoate as compared with the corresponding para-isomer, in contrast to permethylated CDs which possessed para-isomer selectivity. On the other hand, host molecules 4a and 4b showed para-isomer selectivity toward sodium nitrophenoxide guests, indicating that the inclusion selectivity was remarkably influenced by the guest hydrophilic groups. (1)H NMR studies on complexes of those beta-(1,4)-type CD derivatives with p- and m-nitrobenzoates and p- and m-nitrophenolates were carried out to estimate their structures.  相似文献   

11.
3 S-1,2,3,4-Tetrahydro-beta-carboline-3-carboxylic acid (THCA) isolated from Bulbus allii macrostemi was identified as the active antiplatelet aggregation ingredient. However, the very poor water solubility and the shortcoming of being oxidized easily in vivo seriously limit the clinical application of THCA. In the present study, two strategies were used to reduce this tendency. First, the inclusion complex of THCA with beta-cyclodextrin (beta-CD) was prepared. Spectral studies identified that the inclusion complex (beta-CD1,2/THCA) was in equilibrium between beta-CD/THCA and beta-CD2/THCA, and the proportion of two isomers was beta-CD concentration dependent; it was 89% vs 11% in our study. The oxidation of both THCA and beta-CD1,2/THCA by H2O2 followed first-order kinetics, and 35% of THCA and 33% of beta-CD1,2/THCA were oxidized during the monitoring period. In vitro antiplatelet aggregation and in vivo oral administration antithrombotic activity of THCA was largely increased via inclusion complexation with beta-CD. Second, a novel conjugate 6-(3' S-carboline-3'-carboxyamino-ethylamino)-6-deoxy-beta-CD (5-monomer) was prepared. Spectral characterizations demonstrated that 5-monomer was able to self-assemble into 5-dimer, which was coexisting with the monomer with a ratio of 79% vs 21% in solution. The in vitro oxidation of 5-monomer/5-dimer by H2O2 did not occur during the monitoring period. The in vitro antiplatelet aggregation and in vivo antithrombotic assays of 5-monomer /5-dimer demonstrated that the bioactivity of THCA was remarkably increased via conjugation with 6-ethylamino-6-deoxy-beta-CD and produced greater in vitro and in vivo effectiveness than that of the inclusion complex beta-CD1,2/THCA at the same dose. The significant improvement of the bioactivity and stability of THCA indicates that inclusion complexation and conjugation with beta-CD provide promising approaches to improve the practical use of THCA in clinical applications.  相似文献   

12.
Al-catechin/beta-cyclodextrin and Al-quercetin/beta-cyclodextrin (beta-CD) inclusion compounds were synthesized and characterized by IR, UV-vis, 1H and 13C NMR and TG and DTA analyses. Because quercetin is sparingly soluble in water, the stability constants of the Al-quercetin/beta-CD and Al-catechin/beta-CD compounds were determined by phase solubility studies. The AL-type diagrams indicated the formation of 1:1 inclusion compounds and allowed calculation of the stability constants. The thermodynamic parameters were obtained from the dependence of the stability constants on temperature and results indicated that the formation of the inclusion compounds is an enthalpically driven process. The thermal decomposition of the solid Al-quercetin/beta-CD and Al-catechin/beta-CD inclusion compounds took place at different stages, compared with the respective precursors, proving that an inclusion complexation process really occurred.  相似文献   

13.
To further reveal the factors governing the supramolecular assembly of beta-cyclodextrin (beta-CD) inclusion complexes, two aggregates (1 and 2) were prepared from the inclusion complexes of beta-CD with 4-hydroxyazobenzene and 4-aminoazobenzene, respectively, and their binding behavior were investigated by means of X-ray analysis, UV-vis, NMR, and circular dichroism spectra in both solution and the solid state. The obtained results indicated that the beta-CD/4-hydroxyazobenzene complex 1 could form head-to-head dimers (triclinic system, space group P1) in the solid state, which were further self-assembled to a linear supramolecular architecture by the intra- and interdimer hydrogen bond interactions as well as the intradimer pi-pi interactions. However, when the included guest 4-hydroxyazobenzene was switched to a 4-aminoazobenzene, the resultant beta-CD/4-aminoazobenzene complex 2 (monoclinic system, space group P2(1)) could be self-assembled to a wave-type supramolecular aggregate under similar conditions. Furthermore, the combination of crystallographic and spectral investigations jointly revealed the inclusion complexation geometry of beta-CD with 4-hydroxyazobenzene and 4-aminoazobenzene in both solution and the solid state, which demonstrated that the disparity of substituents in the azobenzenes played an important role in the inclusion complexation and molecular assembly, affecting not only the structural features of aggregates but also the binding abilities of azobenzenes with beta-CD.  相似文献   

14.
The probable structure of the inclusion complex of beta-cyclodextrin (beta-CD) and (-)-epigallocatechin gallate (EGCg) in D2O was investigated using several NMR techniques. EGCg formed a 1:1 complex with beta-CD, in which the A ring and a portion of the C ring of EGCg were included at the head of the phenolic hydroxyl group attached to C7 of EGCg in the beta-CD cavity from the wide secondary hydroxyl group side. In the 1:1 complex with beta-CD, EGCg maintained the conformation in which the B and B' rings of EGCg took pseudoequatorial and pseudoaxial positions with respect to the C ring, respectively. The structure of the inclusion complexes of beta-CD and EGCg obtained from NMR experiments supported those determined from AM1 semiempirical SCF MO calculations well.  相似文献   

15.
The interactions between beta-cyclodextrin (beta-CD) and the equimolar/nonequimolar mixtures of sodium perfluorooctanoate (C(7)F(15)COONa, SPFO) and sodium alkyl sulfate (C(n)H(2n+1)SO(4)Na, C(n)SO(4), n = 8, 10, 12) were investigated by 1H and 19F NMR. It showed that beta-CD preferentially included the fluorinated surfactant when exposed to mixtures of hydrogenated (C(n)SO(4)) and fluorinated (SPFO) surfactants, notwithstanding whether the hydrogenated surfactant C(n)SO(4) was more or less hydrophobic than the SPFO. Such preferential inclusion of the fluorinated surfactant continued to a certain concentration of beta-CD at which time the C(n)SO(4) was then observed to be included. The longer the hydrocarbon chain of C(n)SO(4) the lower the concentration of beta-CD at which the hydrogenated surfactants began to show inclusion. The inclusion process can be qualitatively divided into three stages: first, formation of 1:1 beta-CD/SPFO complexes; second, formation of 1:1 beta-CD/C(n)SO(4) complexes; and finally, formation of 2:1 beta-CD/SPFO complexes upon further increase of beta-CD concentration. In the concentration range studied, during the last stage of inclusion both 2:1 beta-CD/C(12)SO(4) and 2:1 beta-CD/SPFO complexes appear to be simultaneously formed in the system of beta-CD/SPFO/C(12)SO(4) but not in either the systems of beta-CD/SPFO/C(8)SO(4) or beta-CD/SPFO/C(10)SO(4). The selective inclusion of the shorter fluorocarbon chain surfactant might be attributed to the greater rigidity and size of the fluorocarbon chains, compared to those of the hydrocarbon chains, which provide for a tighter fit and better interaction between the host and guest. This latter effect appears to dominate the increase in hydrophobic character as the carbon chain length increases in the hydrogenated series.  相似文献   

16.
Crystalline 1:1 inclusion complexes with beta-cyclodextrin (beta-CD) and the sodium salt of nimesulide (4-nitro-2-phenoxymethanesulfonanilide), and the sodium salt of the derivative 2-phenoxymethanesulfonanilide, have been prepared by co-precipitation from aqueous solution. The presence of true inclusion complexes was supported by elemental analysis, thermogravimetry and powder X-ray diffraction. FTIR and 13C CP MAS NMR spectroscopy confirmed that no chemical modification of the guests occurred upon formation of inclusion complexes. The reaction of the precursors 2-phenoxynitrobenzene and 2-phenoxyaniline with beta-CD was also studied and crystalline inclusion complexes with a 2:1 (host-to-guest) stoichiometry were isolated. The interaction of the different guest species with beta-CD host molecules was studied theoretically by carrying out ab initio calculations. Favourable inclusion geometries were obtained for the four guests mentioned above. On the other hand, it was found that the inclusion of the neutral guests nimesulide and 2-phenoxymethanesulfonanilide was considerably less favourable. This is in agreement with the experimentally observed difficulty in isolating true inclusion complexes containing these guests and beta-CD. The calculated lower stability is attributed to the different steric hindrance arising from the different conformational preferences of neutral and anionic forms.  相似文献   

17.
Spectral characteristics of N-phenylanthranilic acid (NPAA) have been studied in different solvents, pH and beta-cyclodextrin (beta-CD) and compared with anthranilic acid (2-aminobenzoic acid, 2ABA). In all solvents a dual fluorescence is observed in NPAA, whereas 2ABA gives single emission. Combining the results observed in the absorption, fluorescence emission and fluorescence excitation spectra, it is found that strong intramolecular hydrogen bonding (IHB) interactions present in NPAA molecule. The inclusion complex of NPAA with beta-CD is analysed by UV-vis, fluorimetry, FT-IR, (1)H NMR, scanning electron microscope and AM 1 method. The above spectral studies show that NPAA forms a 1:1 inclusion complex with beta-CD and COOH group present in the beta-CD cavity. A mechanism is proposed to explain the inclusion process.  相似文献   

18.
The solubilities of beta-cyclodextrin (beta-CD), ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6), and their mixture in water were determined, and the conductivity of these aqueous solutions was measured. It was demonstrated that beta-CD and bmimPF6 could enhance the solubility of each other, and the solubility curves of each were linear with gradients of about 1. The conductivity decreased remarkably with increasing beta-CD concentration, and a discernible break in the conductivity curve could be observed when beta-CD and bmimPF6 were equimolar in the solution. The solubility and conductivity results indicated that inclusion complexes (ICs) of 1:1 stoichiometry were formed. The inclusion compounds were further characterized by using powder X-ray diffraction (XRD) analysis, 13C CP/MAS (cross-polarization magic-angle spinning) NMR and 1H NMR spectroscopy, and thermogravimetric analysis (TGA). The results showed that the ICs were a fine crystalline powder. The host-guest system exhibited a channel-type structure and each glucose unit of beta-CD was in a similar environment. The decomposition temperature of the ICs was lower than that of bmimPF6 and beta-CD individually.  相似文献   

19.
Solid inclusion complexes of two tanshinones (Tans): tanshinone IIA (Tan IIA), tanshinone I (Tan I) with beta-cyclodextrin (beta-CD) were synthesized by coprecipitation method. The solid inclusion complexes were characterized by using several analytical techniques: (1)H NMR spectra, IR spectra and thermal analysis. Stoichiometry of the inclusion complexes of Tans with beta-CD or HP-beta-CD is 1:1 which was investigated in solution. The formation constants of the complexes were determined by UV spectrophotometry. For same kind of CD, the stability was in the order: Tan IIA > Tan I; for same guest, the stability was in the order: HP-beta-CD > beta-CD. The effect of temperature on the inclusion interaction was examined and the thermodynamic parameters of inclusion process, Delta G, Delta H, Delta S were determined as well. The experimental results indicate that the inclusion process was an exothermic and enthalpy-driven process accompanied with a negative entropic contribution. The inclusion interaction between CD and Tans satisfied the law of enthalpy-entropy compensation.  相似文献   

20.
A structural study of the inclusion compound of tolbutamide (TBM) with beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was attempted by means of 1H-nuclear magnetic resonance (1H-NMR) experiments and computer molecular modelling. To establish the stoichiometry and stability constant of the beta-CD:TBM complex, the continuous variation method was used. The presence of true inclusion complexes between TBM and beta-CD or HP-beta-CD in solution was clearly evidenced by the 1H-NMR technique. Changes in chemical shifts of H-3 and H-5 protons, located inside the CD cavity, associated with variations in the chemical shifts of TBM aromatic protons provided clear evidence of inclusion complexation, suggesting that the phenyl moiety of the drug molecule was included in the hydrophobic cavity of CDs. This view was further supported by the observation of intermolecular NOEs between TBM and beta-CD and by the aid of a molecular modelling program, which established the most probable structure of the complex. The molecular graphic computation confirmed that the minimum energy, positioning TBM relative to beta-CD, occurs when the aromatic ring of TBM is included within the beta-CD cavity by its wider side, leaving the aliphatic chain externally, which is in good agreement with the results of 1H-NMR studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号