首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present here the Energetic pharmacophore model representing complementary features of the 1,2,3,4-tetrahydropyrimidine for selective cyclooxygenase-2 (COX-2) inhibition. For the development of pharmacophore hypothesis, a total of 43 previously reported compounds were docked on active site of COX-2 enzyme. The generated pharmacophore features were ranked using energetic terms of Glide XP docking for 1,2,3,4-tetrahydropyrimidine scaffold to optimize its structure requirement for COX-2 inhibition. The thirty new 4,5,6-triphenyl-1,2,3,4-tetrahydropyrimidine derivatives were synthesized and assessed for selective COX-2 inhibitory activity. Two compounds 4B1 and 4B11 were found to be potent and selective COX-2 inhibitors. The molecular docking studies revealed that the newly synthesized compounds can be docked into COX-2 binding site and also provide the molecular basis for their activity.  相似文献   

2.
β3 Adrenergic receptor (β3-AR), is a potential therapeutic target for the treatment of type II diabetes and obesity. We report the identification of novel compounds as β3-AR agonists by integrating different approaches of energetic analysis, structure based pharmacophore designing and virtual screening. In a step wise filtering protocol, structure based virtual screening of 2,33,450 compounds was done. These molecules were docked into the active site of the receptor utilizing three levels of accuracy; ligands passing the HTVS (high throughput virtual screening) step were subsequently analyzed in Glide SP (Standard Precision) and finally in Glide XP (Extra Precision) to estimate the receptor ligand binding affinities. In the second step a total of 300 pharmacophore hypotheses were generated from a set of known and diverse β3-AR agonists. The best hypothesis showed six features: three hydrogen bond acceptors, one positively charged group, and two aromatic rings. To cross validate, pharmacophore filtering was done on the set of shortlisted compounds from structure based VS (virtual screening). The different screening techniques employed were validated using enrichment factor calculations. The energetic based Pharmacophore performed fairly well at distinguishing active from the inactive compounds and yielded a greater diversity of active molecules whereas the number of actives retrieved in the case of structure based screening was the highest.  相似文献   

3.
Targeting SARS-CoV-2 papain-like protease using inhibitors is a suitable approach for inhibition of virus replication and dysregulation of host anti-viral immunity. Engaging all five binding sites far from the catalytic site of PLpro is essential for developing a potent inhibitor. We developed and validated a structure-based pharmacophore model with 9 features of a potent PLpro inhibitor. The pharmacophore model-aided virtual screening of the comprehensive marine natural product database predicted 66 initial hits. This hit library was downsized by filtration through a molecular weight filter of ≤ 500 g/mol. The 50 resultant hits were screened by comparative molecular docking using AutoDock and AutoDock Vina. Comparative molecular docking enables benchmarking docking and relieves the disparities in the search and scoring functions of docking engines. Both docking engines retrieved 3 same compounds at different positions in the top 1 % rank, hence consensus scoring was applied, through which CMNPD28766, aspergillipeptide F emerged as the best PLpro inhibitor. Aspergillipeptide F topped the 50-hit library with a pharmacophore-fit score of 75.916. Favorable binding interactions were predicted between aspergillipeptide F and PLpro similar to the native ligand XR8-24. Aspergillipeptide F was able to engage all the 5 binding sites including the newly discovered BL2 groove, site V. Molecular dynamics for quantification of Cα-atom movements of PLpro after ligand binding indicated that it exhibits highly correlated domain movements contributing to the low free energy of binding and a stable conformation. Thus, aspergillipeptide F is a promising candidate for pharmaceutical and clinical development as a potent SARS-CoV-2 PLpro inhibitor.  相似文献   

4.
We present molecular docking studies on the inhibitors of GSK-3beta kinase in the enzyme binding sites of the X-ray complexes (1H8F, 1PYX, 1O9U, 1Q4L, 1Q5K, and 1UV5) using the Schr?dinger docking tool Glide. Cognate and cross-docking studies using standard precision (SP) and extraprecision (XP) algorithms have been carried out. Cognate docking studies demonstrate that docked poses similar to X-ray poses (root-mean-square deviations of less than 2 A) are found within the top four ranks of the GlideScore and E-model scores. However, cross-docking studies typically produce poses that are significantly deviated from X-ray poses in all but a couple of cases, implying potential for induced fit effects in ligand binding. In this light, we have also carried out induced fit docking studies in the active sites of 1O9U, 1Q4L, and 1Q5K. Specifically, conformational changes have been effected in the active sites of these three protein structures to dock noncognate ligands. Thus, for example, the active site of 1O9U has been induced to fit the ligands of 1Q4L, 1Q5K, and 1UV5. These studies produce ligand docked poses which have significantly lower root-mean-square deviations relative to their X-ray crystallographic poses, when compared to the corresponding values from the cross-docking studies. Furthermore, we have used an ensemble of the induced fit models and X-ray structures to enhance the retrieval of active GSK-3beta inhibitors seeded in a decoy database, normally used in Glide validation studies. Thus, our studies provide valuable insights into computational strategies useful for the identification of potential GSK-3beta inhibitors.  相似文献   

5.
Performance of Glide was evaluated in a sequential multiple ligand docking paradigm predicting the binding modes of 129 protein-ligand complexes crystallized with clusters of 2-6 cooperative ligands. Three sampling protocols (single precision-SP, extra precision-XP, and SP without scaling ligand atom radii-SP hard) combined with three different scoring functions (GlideScore, Emodel and Glide Energy) were tested. The effects of ligand number, docking order and druglikeness of ligands and closeness of the binding site were investigated. On average 36?% of all structures were reproduced with RMSDs lower than 2??. Correctly docked structures reached 50?% when docking druglike ligands into closed binding sites by the SP hard protocol. Cooperative binding to metabolic and transport proteins can dramatically alter pharmacokinetic parameters of drugs. Analyzing the cytochrome P450 subset the SP hard protocol with Emodel ranking reproduced two-thirds of the structures well. Multiple ligand binding is also exploited by the fragment linking approach in lead discovery settings. The HSP90 subset from real life fragment optimization programs revealed that Glide is able to reproduce the positions of multiple bound fragments if conserved water molecules are considered. These case studies assess the utility of Glide in sequential multiple docking applications.  相似文献   

6.
Virtual screening by molecular docking has become a widely used approach to lead discovery in the pharmaceutical industry when a high-resolution structure of the biological target of interest is available. The performance of three widely used docking programs (Glide, GOLD, and DOCK) for virtual database screening is studied when they are applied to the same protein target and ligand set. Comparisons of the docking programs and scoring functions using a large and diverse data set of pharmaceutically interesting targets and active compounds are carried out. We focus on the problem of docking and scoring flexible compounds which are sterically capable of docking into a rigid conformation of the receptor. The Glide XP methodology is shown to consistently yield enrichments superior to the two alternative methods, while GOLD outperforms DOCK on average. The study also shows that docking into multiple receptor structures can decrease the docking error in screening a diverse set of active compounds.  相似文献   

7.
Since the evaluation of ligand conformations is a crucial aspect of structure-based virtual screening, scoring functions play significant roles in it. However, it is known that a scoring function does not always work well for all target proteins. When one cannot know which scoring function works best against a target protein a priori, there is no standard scoring method to know it even if 3D structure of a target protein-ligand complex is available. Therefore, development of the method to achieve high enrichments from given scoring functions and 3D structure of protein-ligand complex is a crucial and challenging task. To address this problem, we applied SCS (supervised consensus scoring), which employs a rough linear correlation between the binding free energy and the root-mean-square deviation (rmsd) of a native ligand conformations and incorporates protein-ligand binding process with docked ligand conformations using supervised learning, to virtual screening. We evaluated both the docking poses and enrichments of SCS and five scoring functions (F-Score, G-Score, D-Score, ChemScore, and PMF) for three different target proteins: thymidine kinase (TK), thrombin (thrombin), and peroxisome proliferator-activated receptor gamma (PPARgamma). Our enrichment studies show that SCS is competitive or superior to a best single scoring function at the top ranks of screened database. We found that the enrichments of SCS could be limited by a best scoring function, because SCS is obtained on the basis of the five individual scoring functions. Therefore, it is concluded that SCS works very successfully from our results. Moreover, from docking pose analysis, we revealed the connection between enrichment and average centroid distance of top-scored docking poses. Since SCS requires only one 3D structure of protein-ligand complex, SCS will be useful for identifying new ligands.  相似文献   

8.
A recently introduced new methodology based on ultrashort (50-100 ps) molecular dynamics simulations with a quantum-refined force-field (QRFF-MD) is here evaluated in its ability both to predict protein-ligand binding affinities and to discriminate active compounds from inactive ones. Physically based scoring functions are derived from this approach, and their performance is compared to that of several standard knowledge-based scoring functions. About 40 inhibitors of cyclin-dependent kinase 2 (CDK2) representing a broad chemical diversity were considered. The QRFF-MD method achieves a correlation coefficient, R(2), of 0.55, which is significantly better than that obtained by a number of traditional approaches in virtual screening but only slightly better than that obtained by consensus scoring (R(2) = 0.50). Compounds from the Available Chemical Directory, along with the known active compounds, were docked into the ATP binding site of CDK2 using the program Glide, and the 650 ligands from the top scored poses were considered for a QRFF-MD analysis. Combined with structural information extracted from the simulations, the QRFF-MD methodology results in similar enrichment of known actives compared to consensus scoring. Moreover, a new scoring function is introduced that combines a QRFF-MD based scoring function with consensus scoring, which results in substantial improvement on the enrichment profile.  相似文献   

9.
Protein-ligand interaction fingerprints have been used to postprocess docking poses of three ligand data sets: a set of 40 low-molecular-weight compounds from the Protein Data Bank, a collection of 40 scaffolds from pharmaceutically relevant protein ligands, and a database of 19 scaffolds extracted from true cdk2 inhibitors seeded in 2230 scaffold decoys. Four popular docking tools (FlexX, Glide, Gold, and Surflex) were used to generate poses for ligands of the three data sets. In all cases, scoring by the similarity of interaction fingerprints to a given reference was statistically superior to conventional scoring functions in posing low-molecular-weight fragments, predicting protein-bound scaffold coordinates according to the known binding mode of related ligands, and screening a scaffold library to enrich a hit list in true cdk2-targeted scaffolds.  相似文献   

10.
Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyses the fourth reaction of de novo pyrimidine biosynthesis in parasites, and represents an important target for the treatment of malaria. In this study, we describe pharmacophore-based virtual screening combined with docking study and biological evaluation as a rational strategy for identification of novel hits as antimalarial agents. Pharmacophore models were established from known PfDHODH inhibitors using the GALAHAD module with IC50 values ranging from 0.033 μM to 142 μM. The best pharmacophore model consisted of three hydrogen bond acceptor, one hydrogen bond donor and one hydrophobic features. The pharmacophore models were validated through receiver operating characteristic and Günere–Henry scoring methods. The best pharmacophore model as a 3D search query was searched against the IBS database. Several compounds with different structures (scaffolds) were retrieved as hit molecules. Among these compounds, those with a QFIT value of more than 81 were docked in the PfDHODH enzyme to further explore the binding modes of these compounds. In silico pharmacokinetic and toxicities were predicted for the best docked molecules. Finally, the identified hits were evaluated in vivo for their antimalarial activity in a parasite inhibition assay. The hits reported here showed good potential to become novel antimalarial agents.  相似文献   

11.
Combination of drugs for multiple targets has been a standard treatment in treating various diseases. A single chemical entity that acts upon multiple targets is emerging nowadays because of their predictable pharmacokinetic and pharmacodynamic properties. We have employed a computer-aided methodology combining molecular docking and pharmacophore filtering to identify chemical compounds that can simultaneously inhibit the human leukotriene hydrolase (hLTA4H) and the human leukotriene C4 synthase (hLTC4S) enzymes. These enzymes are the members of arachidonic acid pathway and act upon the same substrate, LTA4, producing different inflammatory products. A huge set of 4966 druglike compounds from the Maybridge database were docked into the active site of hLTA4H using the GOLD program. Common feature pharmacophore models were developed from the known inhibitors of both the targets using Accelrys Discovery Studio 2.5. The hits from the hLTA4H docking were filtered to match the chemical features of both the pharmacophore models. The compounds that resulted from the pharmacophore filtering were docked into the active site of hLTC4S and the hits those bind well at both the active sites and matched the pharmacophore models were identified as possible dual inhibitors for hLTA4H and hLTC4S enzymes. Reverse validation was performed to ensure the results of the study.  相似文献   

12.
In this paper we describe the search strategies developed for docking flexible molecules to macomolecular sites that are incorporated into the widely distributed DOCK software, version 4.0. The search strategies include incremental construction and random conformation search and utilize the existing Coulombic and Lennard-Jones grid-based scoring function. The incremental construction strategy is tested with a panel of 15 crystallographic testcases, created from 12 unique complexes whose ligands vary in size and flexibility. For all testcases, at least one docked position is generated within 2 Å of the crystallographic position. For 7 of 15 testcases, the top scoring position is also within 2 Å of the crystallographic position. The algorithm is fast enough to successfully dock a few testcases within seconds and most within 100 s. The incremental construction and the random search strategy are evaluated as database docking techniques with a database of 51 molecules docked to two of the crystallographic testcases. Incremental construction outperforms random search and is fast enough to reliably rank the database of compounds within 15 s per molecule on an SGI R10000 cpu.  相似文献   

13.
Poor performance of scoring functions is a well-known bottleneck in structure-based virtual screening (VS), which is most frequently manifested in the scoring functions' inability to discriminate between true ligands vs known nonbinders (therefore designated as binding decoys). This deficiency leads to a large number of false positive hits resulting from VS. We have hypothesized that filtering out or penalizing docking poses recognized as non-native (i.e., pose decoys) should improve the performance of VS in terms of improved identification of true binders. Using several concepts from the field of cheminformatics, we have developed a novel approach to identifying pose decoys from an ensemble of poses generated by computational docking procedures. We demonstrate that the use of target-specific pose (scoring) filter in combination with a physical force field-based scoring function (MedusaScore) leads to significant improvement of hit rates in VS studies for 12 of the 13 benchmark sets from the clustered version of the Database of Useful Decoys (DUD). This new hybrid scoring function outperforms several conventional structure-based scoring functions, including XSCORE::HMSCORE, ChemScore, PLP, and Chemgauss3, in 6 out of 13 data sets at early stage of VS (up 1% decoys of the screening database). We compare our hybrid method with several novel VS methods that were recently reported to have good performances on the same DUD data sets. We find that the retrieved ligands using our method are chemically more diverse in comparison with two ligand-based methods (FieldScreen and FLAP::LBX). We also compare our method with FLAP::RBLB, a high-performance VS method that also utilizes both the receptor and the cognate ligand structures. Interestingly, we find that the top ligands retrieved using our method are highly complementary to those retrieved using FLAP::RBLB, hinting effective directions for best VS applications. We suggest that this integrative VS approach combining cheminformatics and molecular mechanics methodologies may be applied to a broad variety of protein targets to improve the outcome of structure-based drug discovery studies.  相似文献   

14.
Two of the major ongoing challenges in computational drug discovery are predicting the binding pose and affinity of a compound to a protein. The Drug Design Data Resource Grand Challenge 2 was developed to address these problems and to drive development of new methods. The challenge provided the 2D structures of compounds for which the organizers help blinded data in the form of 35 X-ray crystal structures and 102 binding affinity measurements and challenged participants to predict the binding pose and affinity of the compounds. We tested a number of pose prediction methods as part of the challenge; we found that docking methods that incorporate protein flexibility (Induced Fit Docking) outperformed methods that treated the protein as rigid. We also found that using binding pose metadynamics, a molecular dynamics based method, to score docked poses provided the best predictions of our methods with an average RMSD of 2.01 Å. We tested both structure-based (e.g. docking) and ligand-based methods (e.g. QSAR) in the affinity prediction portion of the competition. We found that our structure-based methods based on docking with Smina (Spearman ρ?=?0.614), performed slightly better than our ligand-based methods (ρ?=?0.543), and had equivalent performance with the other top methods in the competition. Despite the overall good performance of our methods in comparison to other participants in the challenge, there exists significant room for improvement especially in cases such as these where protein flexibility plays such a large role.  相似文献   

15.
The docking program LigandFit/Cerius(2) has been used to perform shape-based virtual screening of databases against the aspartic protease renin, a target of determined three-dimensional structure. The protein structure was used in the induced fit binding conformation that occurs when renin is bound to the highly active renin inhibitor 1 (IC(50) = 2 nM). The scoring was calculated using several different scoring functions in order to get insight into the predictability of the magnitude of binding interactions. A database of 1000 diverse and druglike compounds, comprised of 990 members of a virtual database generated by using the iLib diverse software and 10 known active renin inhibitors, was docked flexibly and scored to determine appropriate scoring functions. All seven scoring functions used (LigScore1, LigScore2, PLP1, PLP2, JAIN, PMF, LUDI) were able to retrieve at least 50% of the active compounds within the first 20% (200 molecules) of the entire test database. A hit rate of 90% in the top 1.4% resulted using the quadruple consensus scoring of LigScore2, PLP1, PLP2, and JAIN. Additionally, a focused database was created with the iLib diverse software and used for the same procedure as the test database. Docking and scoring of the 990 focused compounds and the 10 known actives were performed. A hit rate of 100% in the top 8.4% resulted with use of the triple consensus scoring of PLP1, PLP2, and PMF. As expected, a ranking of the known active compounds within the focused database compared to the test database was observed. Adequate virtual screening conditions were derived empirically. They can be used for proximate docking and scoring application of compounds with putative renin inhibiting potency.  相似文献   

16.
Yersinia organisms cause many infectious diseases by invading human cells and delivering their virulence factors via the type three secretion system (T3SS). One alternative strategy in the fight against these pathogenic organisms is to interfere with their T3SS. Previous studies demonstrated that thiol peroxidase, Tpx is functional in the assembly of T3SS and its inhibition by salicylidene acylhydrazides prevents the secretion of pathogenic effectors. In this study, the aim was to identify potential inhibitors of Tpx using an integrated approach starting with high throughput virtual screening and ending with molecular dynamics simulations of selected ligands. Virtual screening of ZINC database of 500,000 compounds via ligand-based and structure-based pharmacophore models retrieved 10,000 hits. The structure-based pharmacophore model was validated using high-throughput virtual screening (HTVS). After multistep docking (SP and XP), common scaffolds were used to find common substructures and the ligand binding poses were optimized using induced fit docking. The stability of the protein–ligand complex was examined with molecular dynamics simulations and the binding free energy of the complex was calculated. As a final outcome eight compounds with different chemotypes were proposed as potential inhibitors for Tpx. The eight ligands identified by a detailed virtual screening protocol can serve as leads in future drug design efforts against the destructive actions of pathogenic bacteria.  相似文献   

17.
We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein–ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate binders from nonbinders in virtual screening and to more accurately predict the ligand binding modes prior to the more computationally expensive FEP calculations of binding affinity.  相似文献   

18.
We present the results of a comprehensive study in which we explored how the docking procedure affects the performance of a virtual screening approach. We used four docking engines and applied 10 scoring functions to the top-ranked docking solutions of seeded databases against six target proteins. The scores of the experimental poses were placed within the total set to assess whether the scoring function required an accurate pose to provide the appropriate rank for the seeded compounds. This method allows a direct comparison of library ranking efficacy. Our results indicate that the LigandFit/Ligscore1 and LigandFit/GOLD docking/scoring combinations, and to a lesser degree FlexX/FlexX, Glide/Ligscore1, DOCK/PMF (Tripos implementation), LigandFit1/Ligscore2 and LigandFit/PMF (Tripos implementation) were able to retrieve the highest number of actives at a 10% fraction of the database when all targets were looked upon collectively. We also show that the scoring functions rank the observed binding modes higher than the inaccurate poses provided that the experimental poses are available. This finding stresses the discriminatory ability of the scoring algorithms, when better poses are available, and suggests that the number of false positives can be lowered with conformers closer to bioactive ones.  相似文献   

19.
20.
Prediction of the binding mode of a ligand (a drug molecule) to its macromolecular receptor, or molecular docking, is an important problem in rational drug design. We have developed a new docking method in which a non-conventional Monte Carlo (MC) simulation technique is employed. A computer program, MCDOCK, was developed to carry out the molecular docking operation automatically. The current version of the MCDOCK program (version 1.0) allows for the full flexibility of ligands in the docking calculations. The scoring function used in MCDOCK is the sum of the interaction energy between the ligand and its receptor, and the conformational energy of the ligand. To validate the MCDOCK method, 19 small ligands, the binding modes of which had been determined experimentally using X-ray diffraction, were docked into their receptor binding sites. To produce statistically significant results, 20 MCDOCK runs were performed for each protein–ligand complex. It was found that a significant percentage of these MCDOCK runs converge to the experimentally observed binding mode. The root-mean-square (rms) of all non-hydrogen atoms of the ligand between the predicted and experimental binding modes ranges from 0.25 to 1.84 Å for these 19 cases. The computational time for each run on an SGI Indigo2/R10000 varies from less than 1 min to 15 min, depending upon the size and the flexibility of the ligands. Thus MCDOCK may be used to predict the precise binding mode of ligands in lead optimization and to discover novel lead compounds through structure-based database searching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号