首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The desirable physical properties of hardness, high temperature stability, and conductivity make the early transition metal nitrides important materials for various technological applications. To learn more about the nature of these materials, the local-density approximation(LDA) and GW approximation i.e. combination of the Green function G and the screened Coulomb interaction W, have been performed. This paper investigates the bulk electronic and physical properties of early transition metal mononitrides, ScN and YN in the rocksalt structure. In this paper, the semicore electrons are regarded as valance electrons. ScN appears to be a semimetal, and YN is semiconductor with band gap of 0.142eV within the LDA, but are in fact semiconductors with indirect band gaps of 1.244 and 0.544\,eV respectively, as revealed by calculations performed using GW approximation.  相似文献   

2.
Using the plane wave version of the full potential linear muffin-tin orbital (FPLMTO) method, which enables an accurate treatment of the interstitial regions, the electronic properties of ScN, YN, LaN and GdN rocksalt/rocksalt superlattices are calculated. It is found that apart from YN/ScN, all the other superlattices have negative bandgaps. However, it is shown that these systems can be semiconductors if a correction is made to the local density approximation (LDA).  相似文献   

3.
The high-pressure structural phase transition, electronic, superconducting and elastic properties of group III nitrides (ScN, YN and LaN) are investigated by first principles calculation with the density functional theory. The calculated lattice parameters are in good agreement with the experimental and other theoretical values. Electronic structure reveals that these materials are semiconductors with an indirect band gap of 1.4, 0.87 and 0.65?eV for ScN, YN and LaN, respectively. The obtained cubic NaCl structure is energetically the most stable structure at ambient pressure. A pressure-induced structural phase transition from NaCl to CsCl structure is predicted. The structural phase transition of ScN, YN and LaN occurs at a pressure of 158, 132 and 26.5?GPa, respectively. On further increase in the pressure, semiconductor-to-metallic transition and superconductivity is observed in these nitrides. The estimated T c values as a function of pressure for ScN, YN and LaN are 31.79, 15.50 and 12.84?K, respectively.  相似文献   

4.
The structural stability of AlN nanowires have been analyzed in wurtzite (B4), zincblende (B3), rocksalt (B1) and CsCl (B2) type phases using density functional theory based ab initio approach. The total energy calculations have been performed in a self-consistent manner using local density approximation as exchange correlation functional. The analysis finds the B4 type phase as most stable amongst the other phases taken into consideration and observes the structural phase transition from B4?→?B3, B4?→?B1, B4?→?B2, B3?→?B1 and B3?→?B2 at 42.7, 76.54, 142, 30.4 and 108.9?GPa respectively. Lattice parameter, bulk modulus and pressure derivatives of AlN nanowires have also been calculated for all the stable phases. The electronic band structure analysis of AlN nanowires shows a semiconducting nature in its B4, B3 and B1 type phases, whereas the B2 type phase is found to be metallic.  相似文献   

5.
Inelastic neutron scattering measurements were carried out to determine the phonon density of states of ZnSe and interpreted with lattice dynamical computations (ab initio as well as a potential model). Calculations are also reported for other II-VI compounds, ZnTe and ZnS. Vibrational (phonon spectra and Grüneisen parameters), and thermal (negative thermal expansion and non-Debye specific heat) properties have been calculated and found to be in good agreement with available experimental data. This model has been further employed to study the pressure-induced solid-solid phase transitions exhibited by these compounds and the results have been compared with experimental data. Total energy calculations for zincblende and SC16 phases of ZnSe were carried out employing the pseudopotential approach under the local density approximation (LDA) as well as the generalized gradient approximation (GGA). The density functional perturbation theory is applied to study the vibrational properties of the zincblende and SC16 phases of ZnSe. An investigation of the pressure dependence of the phonon frequencies shows that the existence of the (experimentally undetected) SC16 phase as a thermodynamically stable high pressure phase is impeded due to dynamical instabilities. A detailed investigation of the polarization of phonons of different energies for the various phases of these compounds indicates that in the case of the zincblende phase the low energy modes are librational, while in the rocksalt phase the low energy modes are bending modes. Further, in ZnTe the low energy bending modes display a larger amplitude of bending than that in ZnSe and ZnS.  相似文献   

6.
The transition phase of GaAs from the zincblende (ZB) structure to the rocksalt (RS) structure is investigated by ab initio plane-wave pseudopotential density functional theory method, and the thermodynamic properties of the ZB and RS structures are obtained through the quasi-harmonic Debye model. It is found that the transition from the ZB structure to the RS structure occurs at the pressure of about 16.3\,GPa, this fact is well consistent with the experimental data and other theoretical results. The dependences of the relative volume V/V0 on the pressure P, the Debye temperature \Th and specific heat CV on the pressure P, as well as the specific heat CV on the temperature T are also obtained successfully.  相似文献   

7.
管鹏飞  王崇愚  于涛 《中国物理 B》2008,17(8):3040-3053
Local density functional is investigated by using the full-potential linearized augmented plane wave (FP-LAPW) method for ScN in the hexagonal structure and the rocksalt structure and for hexagonal structures linking a layered hexagonal phase with wurtzite structure along a homogeneous strain transition path. It is found that the wurtzite ScN is unstable and the layered hexagonal phase, labelled as ho, in which atoms are approximately fivefold coordinated, is metastable, and the rocksalt ScN is stable. The electronic structure, the physical properties of the intermediate structures and the energy band structure along the transition are presented. It is found that the band gaps change from 4.0 to 1.0 eV continuously when c/a value varies from 1.68 to 1.26. It is noticeable that the study of ScN provides an opportunity to apply this kind of material (in wurtzite[h]-derived phase).  相似文献   

8.
Electronic properties and elastic constants of AlN in the wurtzite, zinc-blende and rocksalt structures are investigated using an ab initio pseudopotential method based on the density-functional theory with both the local-density approximation and the generalized gradient approximation for the exchange-correlation functional. The numerically calculated results compare well with the existing experimental data. For elastic constants of rocksalt AlN our results are predictions.  相似文献   

9.
R.A. Cowley 《物理学进展》2013,62(48):421-480
The theory of the physical properties of an anharmonic crystal is discussed by using the thermodynamic Green's functions for the phonons. A perturbation procedure is developed to obtain the Green's functions and it is shown that for some purposes a quasi-harmonic approximation is useful, in which the frequencies of the normal modes are those determined by infra-red or neutron spectrometry. The thermodynamic, elastic, dielectric and scattering properties of an anharmonic crystal are discussed in terms of the Green's functions, and detailed expressions are given for the more important contributions. Detailed numerical calculations are presented of the thermal expansion, dielectric properties and shapes of some of the inelastically scattered neutron groups, for sodium iodide and potassium bromide. The calculations, which give reasonable agreement with experiment, show that even at quite low temperatures, the lifetimes of some of the normal modes can be quite short. By using the quasi-harmonic approximation it is shown that the large temperature dependence of the normal modes in a ferroelectric crystal can be treated adequately.  相似文献   

10.
利用基于密度泛函理论的第一性原理方法研究了闪锌矿和氯化钠结构的GaP的相变及热力学性质.对两种结构的能量体积曲线做公切线,得到了从闪锌矿到氯化钠结构的相变压力约为26.2GPa,与实验结果一致.通过准谐德拜模型得到了不同温度下体积和热膨胀系数与压强的关系,以及不同压强下热容与温度的关系.  相似文献   

11.
We report plane-wave pseudo-potential ab initio calculations using density functional theory in order to investigate the structural parameters, elastic constants, bonding properties and polycrystalline parameters of copper nitrides in zincblende, rocksalt and fluorite structures. Total and partial densities of states indicate a metallic character of these copper nitrides. We estimate bond strengths and types of atomic bonds using Mulliken charge density population analysis and by calculating the electronic localized function. These results reveal the coexistence of covalent, ionic, and metallic bonding.  相似文献   

12.
The pseudopotential method is used to examine the static structural and electronic properties of BeO. At zero pressure, the wurtzite phase is found to be more stable in energy than the zincblende. At high pressure, we predict a phase transformation into an insulating rocksalt structure. The calculated charge density for the valence electrons is in good agreement with experiment.  相似文献   

13.
Using first principles total energy calculations within the full-potential linearized augmented plane wave method, we have studied the structural and electronic properties of yttrium nitride (YN) in the three phases, namely wurtzite, caesium chloride and rocksalt structures. The calculations are performed at zero and under hydrostatic pressure. In agreement with previous findings, it is found that the favored phase for YN is the rocksalt-like structure. We predict that at zero pressure YN in the rocksalt structure is a semiconductor with an indirect bandgap of 0.8 eV. A phase transition from a rocksalt to a caesium chloride structure is found to occur at ∼134 GPa. Besides, a transition from an indirect (ΓX) bandgap semiconductor to a direct (XX) one is predicted at pressure of ∼84 GPa. For the electron effective mass of rocksalt YN, these are the first results, to our knowledge. The information derived from the present study may be useful for the use of YN as an active layer in electronic devices such as diodes and transistors.  相似文献   

14.
张伟  程艳  朱俊  陈向荣 《中国物理 B》2009,18(3):1207-1213
Structural, thermodynamic and electronic properties of zinc-blende AlN under pressure are investigated by first-principles calculations based on the plane-wave basis set. Through the analysis of enthalpy variation of AlN in the zinc-blende (ZB) and the rock-salt (RS) structures with pressure, we find the phase transition of AlN from ZB to RS structure occurs at 6.7 GPa. By using the quasi-harmonic Debye model, we obtain the heat capacity CV, Debye temperature ΘD, Grüneisen parameter γ and thermal expansion coefficient α. The electronic properties including fundamental energy gaps and hydrostatic deformation potentials are investigated and the dependence of energy gaps on pressure is analysed.  相似文献   

15.
基于第一性原理平面波赝势(PWP)和广义梯度近似(GGA)方法,对闪锌矿结构(ZB)和岩盐结构(RS)的ZnSe在0—20GPa高压下的几何结构、态密度、能带结构进行了计算研究,分析了闪锌矿结构ZnSe和岩盐结构ZnSe的几何结构.在此基础上,研究了ZnSe的结构相变、弹性常数、成键情况以及相变压强下电子结构的变化机理.结果发现:通过焓相等原理得到的ZB相到RS相的相变压强为15.3GPa,而由弹性常数判据得到的相变压强为11.52GPa,但在9.5GPa左右并没有发现简单立方相的出现;在结构相变过程中,sp3轨道杂化现象并未消除,Zn原子的4s电子在RS相ZnSe的导电性中起主要贡献.  相似文献   

16.
《Physics letters. A》2001,282(6):415-420
We report a theoretical study of structural stability of two tetragonal phases of carbon nitride, the tetragonal rocksalt phase and the β-tin phase, using a self-consistent-charge density-functional tight-binding method. The stability of these tetragonal phases relative to their cubic counterparts is evaluated at several nitrogen contents. The tetragonal rocksalt phase, which is recently observed in experiment, is found to be more stable than the cubic rocksalt phase at all nitrogen contents considered. On the contrary, the cubic zincblende phase is always energetically competitive with its tetragonal counterpart β-tin phase. The variation of the equilibrium volume and the bulk modulus with changing nitrogen content is investigated. The bond lengths and bond strengths are systematically examined to understand the underlying mechanism.  相似文献   

17.
By full potential linear muffin-tin orbitals (FP-LMTO) method, we have studied the phase transitions of ScN under high pressures. The local density (LDA) approximation was used for the exchange and correlation energy density functional. The most important result is the prediction of the possibility of two phase transitions from the cubic rocksalt (NaCl) structure to the orthorhombic CaSi (Cmmc) structure above 252.5 GPa and to the tetragonal AuCu (P4/mmm) structure at 303.017 GPa, the first one (NaCl-CaSi) occurring at a lower pressure than the well known NaCl to CsCl transition (found here to be 324 GPa).  相似文献   

18.
The transition phase of PtN from zincblende (ZB) structure to rocksalt (RS) structure is investigated by ab initio plane-wave pseudopotential density functional theory method, and the thermodynamic properties of the ZB and RS structures under high pressure and temperature are obtained through the quasi-harmonic Debye model. The transition phase from the ZB structure to the RS structure occurs at the pressure of 18.2 GPa, which agrees well with other calculated values. Moreover, the dependences of the relative volume V/V0 on the pressure P, the Debye temperature Θ and heat capacity CV on the pressure P, together with the heat capacity CV on the temperature T are also successfully obtained.  相似文献   

19.
The transition phase of GaN from zincblende (ZB) structure to rocksalt structure (RS) is investigated by ab initio plane-wave pseudopotential density functional theory method, and the thermodynamic properties of the ZB and RS structures are obtained through the quasi-harmonic Debye model. We find that the transition phase from the ZB structure to the RS structure occurs at the pressure of 42.2 GPa, which is in good agreement with other calculated values. Moreover, the dependences of the relative volume V/V0 on the pressure P, the Debye temperature Θ and heat capacity CV on the pressure P, as well as the heat capacity CV on the temperature T are also successfully obtained.  相似文献   

20.
The elastic constants and thermodynamic properties of c-BN are calculated using the first-principles plane wave method with the relativistic analytic pseudopotential of the Hartwigen, Goedecker and Hutter (HGH) type in the frame of local density approximation and using the quasi-harmonic Debye model, separately. Moreover, the dependences of the normalized volume V/V0 on pressure P, as well as the bulk modulus B, the thermal expansion α, and the heat capacity CV on pressure P and temperature T are also successfully obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号