首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Domain-wall motion along thin ferromagnetic strips with high perpendicular magnetocrystalline anisotropy driven by spin-polarized currents is theoretically analyzed by means of full micromagnetic simulations and one-dimensional model, both including surface roughness and thermal effects. At finite temperature, the results show a current dependence of the domain wall velocity in good qualitative agreement with available experimental observations, depicting a low-current, low velocity creep regime, and a high-current, linear regime separated by a smeared depinning region. The analysis points out the relevance of both thermal fluctuations and surface roughness on the domain wall dynamics, and confirms that these effects are essential to get a better understanding on the origin, the role and the magnitude of the non-adiabaticity by direct comparison with experiments.  相似文献   

2.
3.
Here we report on the domain wall dynamics in amorphous glass-coated FeCuNbSiB microwires measured in the temperature range from 77 up to 400 K. At low temperatures below 200 K, the domain wall velocity is proportional to the applied magnetic field. At temperatures above 200 K, two regions have been found: one with low domain wall mobility at low fields and another one with high domain wall mobility at high fields. The different regions of the domain wall dynamics are treated in terms of the change of the domain wall configuration from transversal to vortex one. Moreover, non-linear regime is shown at low fields at the temperature 373 K as a result of the domain wall interaction with the local defects.  相似文献   

4.
We have studied current-driven dynamics of domain walls when an in-plane magnetic field is present in perpendicularly magnetized nanowires using an analytical model and micromagnetic simulations. We model an experimentally studied system, ultrathin magnetic nanowires with perpendicular anisotropy, where an effective in-plane magnetic field is developed when current is passed along the nanowire due to the Rashba-like spin-orbit coupling. Using a one-dimensional model of a domain wall together with micromagnetic simulations, we show that the existence of such in-plane magnetic fields can either lower or raise the threshold current needed to cause domain wall motion. In the presence of the in-plane field, the threshold current differs for positive and negative currents for a given wall chirality, and the wall motion becomes sensitive to out-of-plane magnetic fields. We show that large non-adiabatic spin torque can counteract the effect of the in-plane field.  相似文献   

5.
In this work, we determine the domain wall velocity in the low field region and study the domain dynamics in as-cast and annealed bi-stable amorphous glass-covered Fe77.5Si7.5B15 microwires. In particular, from the relation between the domain wall velocity and magnetic field in the adiabatic regime, the power-law critical exponent β, the critical field H0 and the domain wall damping η were obtained. It has been verified that the main source of domain wall damping is the eddy current and spin relaxation, both with a strong relation with the magnetoelastic energy. This energy term is changed by the axial applied stress, which, by its time, modifies the damping mechanisms. It was also verified that the domain wall damping terms present different behavior at low (mainly eddy currents) and high applied stress (spin relaxation).  相似文献   

6.
A new three-dimensional simulation procedure was developed for domain wall (grain boundary, APB, magnetic, etc.) migration in the presence of diffusing impurities. The simulation is based upon a kinetic Monte Carlo algorithm and an extended Ising model, incorporating both conserved and non-conserved dynamics. The simulations show a dependence of the domain wall velocity on driving force which is very similar to that seen in 2-d and in qualitative agreement with experiment. That is, the presence of a low mobility regime at small driving force and an abrupt transition to a high mobility regime at larger forces, under some conditions, and a continuous, non-linear dependence of the velocity on the force in others. The main qualitative difference between the 2-d and 3-d simulation results is in how the domain wall roughness depends on driving force. The velocity-driving force relation is not consistent with classic continuum models, but may be described, in the high velocity regime, by a theory based upon a discrete version of these models.  相似文献   

7.
A new three-dimensional simulation procedure was developed for domain wall (grain boundary, APB, magnetic, etc.) migration in the presence of diffusing impurities. The simulation is based upon a kinetic Monte Carlo algorithm and an extended Ising model, incorporating both conserved and non-conserved dynamics. The simulations show a dependence of the domain wall velocity on driving force which is very similar to that seen in 2-d and in qualitative agreement with experiment. That is, the presence of a low mobility regime at small driving force and an abrupt transition to a high mobility regime at larger forces, under some conditions, and a continuous, non-linear dependence of the velocity on the force in others. The main qualitative difference between the 2-d and 3-d simulation results is in how the domain wall roughness depends on driving force. The velocity-driving force relation is not consistent with classic continuum models, but may be described, in the high velocity regime, by a theory based upon a discrete version of these models.  相似文献   

8.
The motion of magnetic domain walls in permalloy nanowires is investigated by real-time resistance measurements. The domain wall velocity is measured as a function of the magnetic field in the presence of a current flowing through the nanowire. We show that the current can significantly increase or decrease the domain wall velocity, depending on its direction. These results are understood within a one-dimensional model of the domain wall dynamics which includes the spin transfer torque.  相似文献   

9.
We deal with the influence of the applied stress on the domain wall velocity in glass-coated magnetic microwires. In general, the domain wall velocity decreases with the applied tensile stress. Four regimes of the domain wall dynamics appear: (1)?diffusion-damped, (2)?a regime with variable domain wall width, (3)?a viscous and (4)?a vortex regime. Detailed analysis of domain wall parameters shows that the structural relaxation plays an important role even at ambient temperatures if high tensile stress is present. At higher fields (viscous regime), the most important damping arises from magnetic relaxation of magnetic moments. Finally, the domain wall velocity steeply increases (reaching a maximum at 7000?m?s(-1)) in the vortex regime and so does the domain wall mobility.  相似文献   

10.
By micromagnetic simulation, we show that faster propagation of 360° domain wall in magnetic nanostrips under spin-polarized currents in conjunction with out-of-plane magnetic fields can be obtained. Without magnetic field, the annihilation process of 360° domain wall is irreversible when spin-polarized current velocity above about 220 m/s. The annihilation of 360° domain wall can be suppressed by an out-of -plane magnetic field and domain wall speed can exceed 1500 m/s at large current density. This is different from the case exhibited in 180° domain wall. The underlying mechanism is investigated by changing the state of 360° domain wall and the direction of out-of-plane field.  相似文献   

11.
The stationary dynamics of vortexlike domain walls in films with three magnetic axes and Goss orientation of the surface is studied for the first time with a micromagnetic method that exactly takes into account all basic types of interaction (including dipole-dipole interaction). Consideration is carried out using a 2D model of magnetization distribution by numerically solving Landau and Lifshitz’s nonlinear equations with attenuation in the Gilbert form. Dynamic configurations of domain walls are established, and the dependences of the domain wall velocity on an applied magnetic field, damping parameter, and magnetic film thickness are found.  相似文献   

12.
The dynamics of a 1D domain wall (DW) in magnetic wires patterned in 2D ultrathin Co films is studied as a function of the wire width w0. The DW velocity v(H) is hugely reduced when w0 is decreased, and its field dependence is consistent with a creep process with a critical exponent micro=1/4. The effective critical field scales as (1/w0). Measurements of v(H) in wires with controlled artificial defects show that this arises from the edge roughness introduced by patterning. We show that the creep law can be renormalized by introducing a topologically induced critical field proportional to (1/w0).  相似文献   

13.
14.
Ferroelectric switching and nanoscale domain dynamics were investigated using atomic force microscopy on monocrystalline Pb(Zr(0.2)Ti(0.8))O(3) thin films. Measurements of domain size versus writing time reveal a two-step domain growth mechanism, in which initial nucleation is followed by radial domain wall motion perpendicular to the polarization direction. The electric field dependence of the domain wall velocity demonstrates that domain wall motion in ferroelectric thin films is a creep process, with the critical exponent mu close to 1. The dimensionality of the films suggests that disorder is at the origin of the observed creep behavior.  相似文献   

15.
范喆  马晓萍  李尚赫  沈帝虎  朴红光  金东炫 《物理学报》2012,61(10):107502-107502
为了实现基于磁畴壁运动的自旋电子学装置, 掌握磁畴壁动力学行为是重要争论之一.研究了在外磁场驱动下L-型纳米铁磁线磁畴壁的动力学行为. 通过微磁学模拟,在各种外磁场的驱动下考察了纳米铁磁线磁畴壁的动力学特性; 在较强外磁场的驱动下, 在不同厚度纳米线上考察了纳米线表面消磁场对磁畴壁动力学行为的影响. 为了进一步证实消磁场对磁畴壁动力学的影响, 在垂直于纳米线表面的外磁场辅助下分析了磁畴壁的动力学行为变化. 结果表明, 随着纳米线厚度和外驱动磁场强度的增加, 增强了纳米线表面的消磁场的形成, 使得磁畴壁内部自旋结构发生周期性变化, 导致磁畴壁在纳米线上传播时出现Walker崩溃现象. 在垂直于纳米线表面的外磁场辅助下, 发现辅助磁场可以调节消磁场的强度和方向. 这意味着利用辅助磁场可以有效地控制纳米铁磁线磁畴壁的动力学行为.  相似文献   

16.
We study field-driven domain wall (DW) motion in nanowires with perpendicular magnetic anisotropy using finite element micromagnetic simulations. Edge roughness is introduced by deforming the finite element mesh, and we vary the correlation length and magnitude of the roughness deformation separately. We observe the Walker breakdown both with and without roughness, with steady DW motion for applied fields below the critical Walker field H(c), and oscillatory motion for larger fields. The value of H(c) is not altered in the presence of roughness. The edge roughness introduces a depinning field. During the transient process of depinning, from the initial configuration to steady DW motion, the DW velocity is significantly reduced in comparison to that for a wire without roughness. The asymptotic DW velocity, on the other hand, is virtually unaffected by the roughness, even though the magnetization reacts to the edge distortions during the entire course of motion, both above and below the Walker breakdown. A moving DW can become pinned again at some later point ('dynamic pinning'). Dynamic pinning is a stochastic process and is observed both for small fields below H(c) and for fields of any strength above H(c). In the latter case, where the DW shows oscillatory motion and the magnetization in the DW rotates in the film plane, pinning can only occur at positions where the DW reverses direction and the instantaneous velocity is zero, i.e., at the beginning or in the middle of a positional oscillation cycle. In our simulations pinning was only observed at the beginnings of cycles, where the magnetization is pointing along the wire. The depinning field depends linearly on the magnitude of the edge roughness. The strongest pinning fields are observed for roughness correlation lengths that match the domain wall width.  相似文献   

17.
Small helical anisotropy was induced in amorphous ferromagnetic Co68.2Fe4.3Si12.5B15 wire by current annealing and simultaneous application of tensile stress and torsion. Presence of helical anisotropy was confirmed by measurement and analysis of the circular magnetic flux versus axial magnetic field hysteresis loops. These measurements also showed that a single domain wall between circular domains can be created by placing the wire in a sufficiently high inhomogeneous magnetic field generated by Helmholtz coils with opposite currents. The domain wall velocity versus axial driving field was measured. The results show that the basic dynamic properties (magnitude of the wall mobility, field interval in which linear dependencies between velocity and field are observed, accelerated increase of the velocity for higher fields) are very similar to those obtained for the domain wall between circular domains driven by a constant circular field. The Hall effect was detected in the eddy current loop generated by the moving domain wall.  相似文献   

18.
As a magnetic domain wall propagates under small fields through a random potential, it roughens as a result of weak collective pinning, known as creep. Using Kerr microscopy, we report experimental evidence of a surprising deroughening of wall pairs in the creep regime, in a 0.5 nm thick Co layer with perpendicular anisotropy. A bound state is found in cases where two rough domains nucleated far away from one another and first growing under the action of a magnetic field eventually do not merge. The two domains remain separated by a strip of unreversed magnetization, characterized by flat edges and stabilized by dipolar fields. A creep theory that includes dipolar interactions between domains successfully accounts for (i) the domain wall deroughening as the width of the strip decreases and (ii) the quasistatic and dynamic field dependence of the strip width s.  相似文献   

19.
We have studied the effect of thermal treatment on the domain wall dynamics of FeSiB and FeCoMoB microwires. It was shown that annealing in transversal magnetic field increases the domain wall mobility as well as the domain wall velocity. Annealing under the tensile stress hinders the appearance of the monodomain structure but application of tensile stress leads to the magnetic bistability having the domain wall mobility twice higher that in as-cast state. Further increase of the tensile stress reduces the domain wall mobility but the domain wall velocity increases as a result of the decrease of critical propagation field. Annealing of the FeCoMoB microwire by Joule heating leads to introduction of the circular anisotropy that favors the vortex domain wall. Such treatment increases the domain wall mobility as well as the maximum domain wall velocity.  相似文献   

20.
In this paper we investigate the role of magneto-crystalline anisotropy on the domain wall (DW) properties of tubular magnetic nanostructures. Based on a theoretical model and micromagnetic simulations, we show that either cubic or uniaxial magneto-crystalline anisotropies have some influence on the domain wall properties (wall size, propagation velocity and energy barrier) and then on the overall magnetization reversal mechanism. Besides the characterization of the transverse and vortex domain wall sizes for different anisotropies, we predict an anisotropy dependent transition between the occurrence of transverse and vortex domain walls in tubular nanowires. We also discuss the dynamics of the vortex DW propagation gradually increasing the uniaxial anisotropy constant and we found that the average velocity is considerably reduced. Our results show that different anisotropies can be considered in real samples in order to manipulate the domain wall behavior and the magnetization reversal process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号