首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moment-angle manifolds provide a wide class of examples of non-Kähler compact complex manifolds. A complex moment-angle manifold \(\mathcal {Z}\) is constructed via certain combinatorial data, called a complete simplicial fan. In the case of rational fans, the manifold \(\mathcal {Z}\) is the total space of a holomorphic bundle over a toric variety with fibres compact complex tori. In general, a complex moment-angle manifold \(\mathcal {Z}\) is equipped with a canonical holomorphic foliation \({\mathcal {F}}\) which is equivariant with respect to the \(({\mathbb {C}}^\times )^m\)-action. Examples of moment-angle manifolds include Hopf manifolds of Vaisman type, Calabi–Eckmann manifolds, and their deformations. We construct transversely Kähler metrics on moment-angle manifolds, under some restriction on the combinatorial data. We prove that any Kähler submanifold (or, more generally, a Fujiki class \(\mathcal {C}\) subvariety) in such a moment-angle manifold is contained in a leaf of the foliation \({\mathcal {F}}\). For a generic moment-angle manifold \(\mathcal {Z}\) in its combinatorial class, we prove that all subvarieties are moment-angle manifolds of smaller dimension and there are only finitely many of them. This implies, in particular, that the algebraic dimension of \(\mathcal {Z}\) is zero.  相似文献   

2.
Let \(\, X^n ,\ M^n\,\) be any pair of compact connected Riemannian manifolds; the only assumption on \(\,M^n\,\) is that the Gromov–Hausdorff distance \(\,\varepsilon \,\) between \(\,M^n\,\) and \(\,X^n\,\) is smaller than the (normalized) injectivity radius of \(\, X^n\,\). Using a transport of measures and a new notion of barycentre, we construct a \(\,C^1\,\) Gromov–Hausdorff \(\,C_0\cdot \varepsilon ^{2/3}\)-approximation \(\,H : M^n \rightarrow X^n\,\), whose energy and Jacobian determinant are sharply bounded from above by \(\, 1 + C_1\cdot \varepsilon ^{1/3}\,\) (the constants \(\,C_i\,\) are explicit), implying a sharp lower bound for the ratio between the volumes of \(\,M^n\,\) and \(\,X^n\,\). This result extends to the non compact case, when \(\,X^n\,\) and \(\,M^n\,\) are only supposed to be quasi-isometric.  相似文献   

3.
A fundamental result by Gromov and Thurston asserts that, if M is a closed hyperbolic n-manifold, then the simplicial volume \(\Vert M\Vert \) of M is equal to \(\mathrm{Vol}(M)/v_n\), where \(v_n\) is a constant depending only on the dimension of M. The same result also holds for complete finite-volume hyperbolic manifolds without boundary, while Jungreis proved that the ratio \(\mathrm{Vol}(M)/\Vert M\Vert \) is strictly smaller than \(v_n\) if M is compact with nonempty geodesic boundary. We prove here a quantitative version of Jungreis’ result for \(n\ge 4\), which bounds from below the ratio \(\Vert M\Vert /\mathrm{Vol}(M)\) in terms of the ratio \(\mathrm{Vol}(\partial M)/\mathrm{Vol}(M)\). As a consequence, we show that, for \(n\ge 4\), a sequence \(\{M_i\}\) of compact hyperbolic n-manifolds with geodesic boundary satisfies \(\lim _i \mathrm{Vol}(M_i)/\Vert M_i\Vert =v_n\) if and only if \(\lim _i \mathrm{Vol}(\partial M_i)/\mathrm{Vol}(M_i)=0\). We also provide estimates of the simplicial volume of hyperbolic manifolds with geodesic boundary in dimension 3.  相似文献   

4.
Let \({\mathcal {N}}_m\) be the group of \(m\times m\) upper triangular real matrices with all the diagonal entries 1. Then it is an \((m-1)\)-step nilpotent Lie group, diffeomorphic to \({\mathbb {R}}^{\frac{1}{2} m(m-1)}\). It contains all the integer matrices as a lattice \(\Gamma _m\). The automorphism group of \({\mathcal {N}}_m \ (m\ge 4)\) turns out to be extremely small. In fact, \(\mathrm {Aut}({\mathcal {N}})=\mathcal {I} \rtimes \mathrm {Out}({\mathcal {N}})\), where \(\mathcal {I}\) is a connected, simply connected nilpotent Lie group, and \(\mathrm {Out}({\mathcal {N}})={{\tilde{K}}}={(\mathbb {R}^*)^{m-1}\rtimes \mathbb {Z}_2}\). With a nice left-invariant Riemannian metric on \({\mathcal {N}}\), the isometry group is \(\mathrm {Isom}({\mathcal {N}})= {\mathcal {N}} \rtimes K\), where \(K={(\mathbb {Z}_2)^{m-1}\rtimes \mathbb {Z}_2}\subset {{\tilde{K}}}\) is a maximal compact subgroup of \(\mathrm {Aut}({\mathcal {N}})\). We prove that, for odd \(m\ge 4\), there is no infra-nilmanifold which is essentially covered by the nilmanifold \(\Gamma _m\backslash {\mathcal {N}}_m\). For \(m=2n\ge 4\) (even), there is a unique infra-nilmanifold which is essentially (and doubly) covered by the nilmanifold \(\Gamma _m\backslash {\mathcal {N}}_m\).  相似文献   

5.
In this paper we study four-dimensional \((m,\rho )\)-quasi-Einstein manifolds with harmonic Weyl curvature when \(m\notin \{0,\pm 1,-2,\pm \infty \}\) and \(\rho \notin \{\frac{1}{4},\frac{1}{6}\}\). We prove that a non-trivial \((m,\rho )\)-quasi-Einstein metric g (not necessarily complete) is locally isometric to one of the following: (i) \({\mathcal {B}}^2_\frac{R}{2(m+2)}\times {\mathbb {N}}^2_\frac{R(m+1)}{2(m+2)}\), where \({\mathcal {B}}^2_\frac{R}{2(m+2)}\) is the northern hemisphere in the two-dimensional (2D) sphere \({\mathbb {S}}^2_\frac{R}{2(m+2)}\), \({\mathbb {N}}_\delta \) is a 2D Riemannian manifold with constant curvature \(\delta \), and R is the constant scalar curvature of g. (ii) \({\mathcal {D}}^2_\frac{R}{2(m+2)}\times {\mathbb {N}}^2_\frac{R(m+1)}{2(m+2)}\), where \({\mathcal {D}}^2_\frac{R}{2(m+2)}\) is half (cut by a hyperbolic line) of hyperbolic plane \({\mathbb {H}}^2_\frac{R}{2(m+2)}\). (iii) \({\mathbb {H}}^2_\frac{R}{2(m+2)}\times {\mathbb {N}}^2_\frac{R(m+1)}{2(m+2)}\). (iv) A certain singular metric with \(\rho =0\). (v) A locally conformal flat metric. By applying this local classification, we obtain a classification of the complete \((m,\rho )\)-quasi-Einstein manifolds given the condition of a harmonic Weyl curvature. Our result can be viewed as a local classification of gradient Einstein-type manifolds. A corollary of our result is the classification of \((\lambda ,4+m)\)-Einstein manifolds, which can be viewed as (m, 0)-quasi-Einstein manifolds.  相似文献   

6.
In an earlier paper, we studied manifolds M endowed with a generalized F structure \(\Phi \in \mathrm{End}(TM\oplus T^*M)\), skew-symmetric with respect to the pairing metric, such that \(\Phi ^3+\Phi =0\). Furthermore, if \(\Phi \) is integrable (in some well-defined sense), \(\Phi \) is a generalized CRF structure. In the present paper, we study quasi-classical generalized F and CRF structures, which may be seen as a generalization of the holomorphic Poisson structures (it is well known that the latter may also be defined via generalized geometry). The structures that we study are equivalent to a pair of tensor fields \((A\in \mathrm{End}(TM),\pi \in \wedge ^2TM)\), where \(A^3+A=0\) and some relations between A and \(\pi \) hold. We establish the integrability conditions in terms of \((A,\pi )\). They include the facts that A is a classical CRF structure, \(\pi \) is a Poisson bivector field and \(\mathrm{im}\,A\) is a (non)holonomic Poisson submanifold of \((M,\pi )\). We discuss the case where either \(\mathrm{ker}\,A\) or \(\mathrm{im}\,A\) is tangent to a foliation and, in particular, the case of almost contact manifolds. Finally, we show that the dual bundle of \(\mathrm{im}\,A\) inherits a Lie algebroid structure and we briefly discuss the Poisson cohomology of \(\pi \), including an associated spectral sequence and a Dolbeault type grading.  相似文献   

7.
A bounded linear operator T acting on a Hilbert space is said to have orthogonality property \(\mathcal {O}\) if the subspaces \(\ker (T-\alpha )\) and \(\ker (T-\beta )\) are orthogonal for all \(\alpha , \beta \in \sigma _p(T)\) with \(\alpha \ne \beta \). In this paper, the authors investigate the compact perturbations of operators with orthogonality property \(\mathcal {O}\). We give a sufficient and necessary condition to determine when an operator T has the following property: for each \(\varepsilon >0\), there exists \(K\in \mathcal {K(H)}\) with \(\Vert K\Vert <\varepsilon \) such that \(T+K\) has orthogonality property \(\mathcal {O}\). Also, we study the stability of orthogonality property \(\mathcal {O}\) under small compact perturbations and analytic functional calculus.  相似文献   

8.
In this paper we consider the compactness of \(\beta \)-symplectic critical surfaces in a Kähler surface. Let M be a compact Kähler surface and \(\Sigma _i\subset M\) be a sequence of closed \(\beta _i\)-symplectic critical surfaces with \(\beta _i\rightarrow \beta _0\in (0,\infty )\). Suppose the quantity \(\int _{\Sigma _i}\frac{1}{\cos ^q\alpha _i}d\mu _i\) (for some \(q>4\)) and the genus of \(\Sigma _{i}\) are bounded, then there exists a finite set of points \({{\mathcal {S}}}\subset M\) and a subsequence \(\Sigma _{i'}\) which converges uniformly in the \(C^l\) topology (for any \(l<\infty \)) on compact subsets of \(M\backslash {{\mathcal {S}}}\) to a \(\beta _0\)-symplectic critical surface \(\Sigma \subset M\), each connected component of \(\Sigma \setminus {{\mathcal {S}}}\) can be extended smoothly across \({{\mathcal {S}}}\).  相似文献   

9.
10.
Let \(X\) be a complex projective variety with only canonical singularities and with trivial canonical bundle. Let \(L\) be an ample line bundle on \(X\). Assume that the pair \((X,L)\) is the flat limit of a family of smooth polarized Calabi-Yau manifolds. Assume that for each singular point \(x \in X\) there exist a Kähler-Einstein Fano manifold \(Z\) and a positive integer \(q\) dividing \(K_{Z}\) such that \(-\frac{1}{q}K_{Z}\) is very ample and such that the germ \((X,x)\) is locally analytically isomorphic to a neighborhood of the vertex of the blow-down of the zero section of \(\frac{1}{q}K_{Z}\). We prove that up to biholomorphism, the unique weak Ricci-flat Kähler metric representing \(2\pi c_{1}(L)\) on \(X\) is asymptotic at a polynomial rate near \(x\) to the natural Ricci-flat Kähler cone metric on \(\frac{1}{q}K_{Z}\) constructed using the Calabi ansatz. In particular, our result applies if \((X, \mathcal{O}(1))\) is a nodal quintic threefold in \(\mathbf {P}^{4}\). This provides the first known examples of compact Ricci-flat manifolds with non-orbifold isolated conical singularities.  相似文献   

11.
In this article, using the heat kernel approach from Bouche (Asymptotic results for Hermitian line bundles over complex manifolds: The heat kernel approach, Higher-dimensional complex varieties, pp 67–81, de Gruyter, Berlin, 1996), we derive sup-norm bounds for cusp forms of integral and half-integral weight. Let \({\Gamma\subset \mathrm{PSL}_{2}(\mathbb{R})}\) be a cocompact Fuchsian subgroup of first kind. For \({k \in \frac{1}{2} \mathbb{Z}}\) (or \({k \in 2\mathbb{Z}}\)), let \({S^{k}_{\nu}(\Gamma)}\) denote the complex vector space of cusp forms of weight-k and nebentypus \({\nu^{2k}}\) (\({\nu^{k\slash 2}}\), if \({k \in 2\mathbb{Z}}\)) with respect to \({\Gamma}\), where \({\nu}\) is a unitary character. Let \({\lbrace f_{1},\ldots,f_{j_{k}} \rbrace}\) denote an orthonormal basis of \({S^{k}_{\nu}(\Gamma)}\). In this article, we show that as \({k \rightarrow \infty,}\) the sup-norm for \({\sum_{i=1}^{j_{k}}y^{k}|f_{i}(z)|^{2}}\) is bounded by O(k), where the implied constant is independent of \({\Gamma}\). Furthermore, using results from Berman (Math. Z. 248:325–344, 2004), we extend these results to the case when \({\Gamma}\) is cofinite.  相似文献   

12.
Graham, Hamada, Kohr and Kohr studied the normalized time \(T\) reachable families \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},\Omega )\) of the Loewner differential equation, which are generated by the Carathéodory mappings with values in a subfamily \(\Omega \) of the Carathéodory family \({\mathcal {N}}_A\) for the Euclidean unit ball \({\mathbb {B}}^n\), where \(A\) is a linear operator with \(k_+(A)<2m(A)\) (\(k_+(A)\) is the Lyapunov index of \(A\) and \(m(A)=\min \{\mathfrak {R}\left\langle Az,z\right\rangle \big |z\in {\mathbb {C}}^n,\Vert z\Vert =1\}\)). They obtained some compactness and density results, as generalizations of related results due to Roth, and conjectured that if \(\Omega \) is compact and convex, then \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},\Omega )\) is compact and \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},ex\,\Omega )\) is dense in \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},\Omega )\), where \(ex\,\Omega \) denotes the corresponding set of extreme points and \(T\in [0,\infty ]\). We confirm this, by embedding the Carathéodory mappings in a suitable Bochner space.  相似文献   

13.
Let \(\mathcal S\) be an abelian group of automorphisms of a probability space \((X, {\mathcal A}, \mu )\) with a finite system of generators \((A_1, \ldots , A_d).\) Let \(A^{{\underline{\ell }}}\) denote \(A_1^{\ell _1} \ldots A_d^{\ell _d}\), for \({{\underline{\ell }}}= (\ell _1, \ldots , \ell _d).\) If \((Z_k)\) is a random walk on \({\mathbb {Z}}^d\), one can study the asymptotic distribution of the sums \(\sum _{k=0}^{n-1} \, f \circ A^{\,{Z_k(\omega )}}\) and \(\sum _{{\underline{\ell }}\in {\mathbb {Z}}^d} {\mathbb {P}}(Z_n= {\underline{\ell }}) \, A^{\underline{\ell }}f\), for a function f on X. In particular, given a random walk on commuting matrices in \(SL(\rho , {\mathbb {Z}})\) or in \({\mathcal M}^*(\rho , {\mathbb {Z}})\) acting on the torus \({\mathbb {T}}^\rho \), \(\rho \ge 1\), what is the asymptotic distribution of the associated ergodic sums along the random walk for a smooth function on \({\mathbb {T}}^\rho \) after normalization? In this paper, we prove a central limit theorem when X is a compact abelian connected group G endowed with its Haar measure (e.g., a torus or a connected extension of a torus), \(\mathcal S\) a totally ergodic d-dimensional group of commuting algebraic automorphisms of G and f a regular function on G. The proof is based on the cumulant method and on preliminary results on random walks.  相似文献   

14.
The dynamics of functions \(f_\lambda (z)= \lambda \frac{\mathrm{e}^{z}}{z+1}\ \text{ for }\ z\in \mathbb {C}, \lambda >0\) is studied showing that there exists \(\lambda ^* > 0\) such that the Julia set of \(f_\lambda \) is disconnected for \(0< \lambda < \lambda ^*\) whereas it is the whole Riemann sphere for \(\lambda > \lambda ^*\). Further, for \(0< \lambda < \lambda ^*\), the Julia set is a disjoint union of two topologically and dynamically distinct completely invariant subsets, one of which is totally disconnected. The union of the escaping set and the backward orbit of \(\infty \) is shown to be disconnected for \(0<\lambda < \lambda ^*\) whereas it is connected for \(\lambda > \lambda ^*\). For complex \(\lambda \), it is proved that either all multiply connected Fatou components ultimately land on an attracting or parabolic domain containing the omitted value of the function or the Julia set is connected. In the latter case, the Fatou set can be empty or consists of Siegel disks. All these possibilities are shown to occur for suitable parameters. Meromorphic functions \(E_n(z) =\mathrm{e}^{z}(1+z+\frac{z^2}{2!}+\cdots +\frac{z^n}{n!})^{-1}\), which we call exponential-like, are studied as a generalization of \(f(z)=\frac{\mathrm{e}^{z}}{z+1}\) which is nothing but \(E_1(z)\). This name is justified by showing that \(E_n\) has an omitted value 0 and there are no other finite singular value. In fact, it is shown that there is only one singularity over 0 as well as over \(\infty \) and both are direct. Non-existence of Herman rings are proved for \(\lambda E_n \).  相似文献   

15.
In the classification theorems of Vinberg and Yakimova for commutative nilmanifolds, the relevant nilpotent groups have a very surprising analytic property. The manifolds are of the form \(G/K = N\rtimes K/K\) where, in all but three cases, the nilpotent group \(N\) has irreducible unitary representations whose coefficients are square integrable modulo the center \(Z\) of \(N\). Here we show that, in those three “exceptional” cases, the group \(N\) is a semidirect product \(N_{1}\rtimes \mathbb {R}\) or \(N_{1}\rtimes \mathbb {C}\) where the normal subgroup \(N_{1}\) contains the center \(Z\) of \(N\) and has irreducible unitary representations whose coefficients are square integrable modulo \(Z\). This leads directly to explicit harmonic analysis and Fourier inversion formulae for commutative nilmanifolds.  相似文献   

16.
The notation \(F\rightarrow (G,H)\) means that if the edges of F are colored red and blue, then the red subgraph contains a copy of G or the blue subgraph contains a copy of H. The connected size Ramsey number \(\hat{r}_c(G,H)\) of graphs G and H is the minimum size of a connected graph F satisfying \(F\rightarrow (G,H)\). For \(m \ge 2,\) the graph consisting of m independent edges is called a matching and is denoted by \(mK_2\). In 1981, Erdös and Faudree determined the size Ramsey numbers for the pair \((mK_2, K_{1,t})\). They showed that the disconnected graph \(mK_{1,t} \rightarrow (mK_2,K_{1,t})\) for \( t,m \ge 1\). In this paper, we will determine the connected size Ramsey number \(\hat{r}_c(nK_2, K_{1,3})\) for \(n\ge 2\) and \(\hat{r}_c(3K_2, C_4)\). We also derive an upper bound of the connected size Ramsey number \(\hat{r}_c(nK_2, C_4),\) for \(n\ge 4\).  相似文献   

17.
In this paper, we extend the well-known result “the predual of Hardy space \(H^1\) is VMO” to the product setting, associated with differential operators. Let \(L_i\), \(i = 1, 2\), be the infinitesimal generators of the analytic semigroups \(\{e^{-tL_i}\}\) on \(L^2({\mathbb {R}})\). Assume that the kernels of the semigroups \(\{e^{-tL_i}\}\) satisfy the Gaussian upper bounds. We introduce the VMO spaces VMO\(_{L_1, L_2}(\mathbb {R}\times \mathbb {R})\) associated with operators \(L_1\) and \(L_2\) on the product domain \(\mathbb {R}\times \mathbb {R}\), then show that the dual space of VMO\(_{L_1, L_2}(\mathbb {R}\times \mathbb {R})\) is the Hardy space \(H^1_{L_1^*, L_2^*}(\mathbb {R}\times \mathbb {R})\) associated with the adjoint operators \(L^*_1\) and \(L^*_2\).  相似文献   

18.
Let \((G,+)\) be an Abelian topological group, which is also a \(T_{0}\)-space and a Baire space simultaneously, D be an open connected subset of G and \(\alpha : D-D \rightarrow {\mathbb R}\) be a function continuous at zero and such that \(\alpha (0)=0\). We show that if \((f_n)\) is a sequence of continuous functions \(f_n : D \rightarrow {\mathbb R}\) such that \(f_n(z) \le \frac{1}{2} f_n(x)+\frac{1}{2}f(y)+\alpha (x-y)\) for \(n\in {\mathbb N}\) and \(x,y,z\in D\) such that \(2z=x+y\) and if \((f_n)\) is pointwise convergent [bounded] then it is convergent uniformly on compact subsets of D [in the case when G is additionally a separable space, it contains a subsequence which is convergent on compact subsets of D].  相似文献   

19.
20.
The epireflective subcategories of \(\mathbf{Top}\), that are closed under epimorphic (or bimorphic) images, are \(\{ X \mid |X| \le 1 \} \), \(\{ X \mid X\) is indiscrete\(\} \) and \(\mathbf{Top}\). The epireflective subcategories of \(\mathbf{T_2Unif}\), closed under epimorphic images, are: \(\{ X \mid |X| \le 1 \} \), \(\{ X \mid X\) is compact \(T_2 \} \), \(\{ X \mid \) covering character of X is \( \le \lambda _0 \} \) (where \(\lambda _0\) is an infinite cardinal), and \(\mathbf{T_2Unif}\). The epireflective subcategories of \(\mathbf{Unif}\), closed under epimorphic (or bimorphic) images, are: \(\{ X \mid |X| \le 1 \} \), \(\{ X \mid X\) is indiscrete\(\} \), \(\{ X \mid \) covering character of X is \( \le \lambda _0 \} \) (where \(\lambda _0\) is an infinite cardinal), and \(\mathbf{Unif}\). The epireflective subcategories of \(\mathbf{Top}\), that are algebraic categories, are \(\{ X \mid |X| \le 1 \} \), and \(\{ X \mid X\) is indiscrete\(\} \). The subcategories of \(\mathbf{Unif}\), closed under products and closed subspaces and being varietal, are \(\{ X \mid |X| \le 1 \} \), \(\{ X \mid X\) is indiscrete\(\} \), \(\{ X \mid X\) is compact \(T_2 \} \). The subcategories of \(\mathbf{Unif}\), closed under products and closed subspaces and being algebraic, are \(\{ X \mid X\) is indiscrete\( \} \), and all epireflective subcategories of \(\{ X \mid X\) is compact \(T_2 \} \). Also we give a sharpened form of a theorem of Kannan-Soundararajan about classes of \(T_3\) spaces, closed for products, closed subspaces and surjective images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号