首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study generalizations of the classical Bernstein operators on the polynomial spaces \(\mathbb {P}_{n}[a,b]\), where instead of fixing \(\mathbf {1}\) and x, we reproduce exactly \(\mathbf {1}\) and a polynomial \(f_1\), strictly increasing on [ab]. We prove that for sufficiently large n, there always exist generalized Bernstein operators fixing \(\mathbf {1}\) and \(f_1\). These operators are defined by non-decreasing sequences of nodes precisely when \(f_1^\prime > 0\) on (ab), but even if \(f_1^\prime \) vanishes somewhere inside (ab), they converge to the identity.  相似文献   

2.
Let A be an ordered Banach algebra with a unit \(\mathbf{e}\) and a cone \(A^+\). An element p of A is said to be an order idempotent if \(p^2 = p\) and \(0 \le p\le \mathbf{e}\). An element \(a\in A^+\) is said to be irreducible if the relation \((\mathbf{e}-p)ap = 0\), where p is an order idempotent, implies \(p = 0\) or \(p = \mathbf{e}\). For an arbitrary element a of A the peripheral spectrum \(\sigma _\mathrm{per}(a)\) of a is the set \(\sigma _\mathrm{per}(a) = \{\lambda \in \sigma (a):|\lambda | = r(a)\}\), where \(\sigma (a)\) is the spectrum of a and r(a) is the spectral radius of a. We investigate properties of the peripheral spectrum of an irreducible element a. Conditions under which \(\sigma _\mathrm{per}(a)\) contains or coincides with \(r(a)H_m\), where \(H_m\) is the group of all \(m^\mathrm{th}\) roots of unity, and the spectrum \(\sigma (a)\) is invariant under rotation by the angle \(\frac{2\pi }{m}\) for some \(m\in {\mathbb N}\), are given. The correlation between these results and the existence of a cyclic form of a is considered. The conditions under which a is primitive, i.e., \(\sigma _\mathrm{per}(a) = \{r(a)\}\), are studied. The necessary assumptions on the algebra A which imply the validity of these results, are discussed. In particular, the Lotz–Schaefer axiom is introduced and finite-rank elements of A are defined. Other approaches to the notions of irreducibility and primitivity are discussed. Conditions under which the inequalities \(0 \le b < a\) imply \(r(b) < r(a)\) are studied. The closedness of the center \(A_\mathbf{e}\), i.e., of the order ideal generated by \(\mathbf{e}\) in A, is proved.  相似文献   

3.
Given a simple digraph D on n vertices (with \(n\ge 2\)), there is a natural construction of a semigroup of transformations \(\langle D\rangle \). For any edge (ab) of D, let \(a\rightarrow b\) be the idempotent of rank \(n-1\) mapping a to b and fixing all vertices other than a; then, define \(\langle D\rangle \) to be the semigroup generated by \(a \rightarrow b\) for all \((a,b) \in E(D)\). For \(\alpha \in \langle D\rangle \), let \(\ell (D,\alpha )\) be the minimal length of a word in E(D) expressing \(\alpha \). It is well known that the semigroup \(\mathrm {Sing}_n\) of all transformations of rank at most \(n-1\) is generated by its idempotents of rank \(n-1\). When \(D=K_n\) is the complete undirected graph, Howie and Iwahori, independently, obtained a formula to calculate \(\ell (K_n,\alpha )\), for any \(\alpha \in \langle K_n\rangle = \mathrm {Sing}_n\); however, no analogous non-trivial results are known when \(D \ne K_n\). In this paper, we characterise all simple digraphs D such that either \(\ell (D,\alpha )\) is equal to Howie–Iwahori’s formula for all \(\alpha \in \langle D\rangle \), or \(\ell (D,\alpha ) = n - \mathrm {fix}(\alpha )\) for all \(\alpha \in \langle D\rangle \), or \(\ell (D,\alpha ) = n - \mathrm {rk}(\alpha )\) for all \(\alpha \in \langle D\rangle \). We also obtain bounds for \(\ell (D,\alpha )\) when D is an acyclic digraph or a strong tournament (the latter case corresponds to a smallest generating set of idempotents of rank \(n-1\) of \(\mathrm {Sing}_n\)). We finish the paper with a list of conjectures and open problems.  相似文献   

4.
We apply the theory of generalized polynomial identities with automorphisms and skew derivations to prove the following theorem: Let A be a prime ring with the extended centroid C and with two-sided Martindale quotient ring Q, R a nonzero right ideal of A and \(\delta \) a nonzero \(\sigma \)-derivation of A, where \(\sigma \) is an epimorphism of A. For \(x,y\in A\), we set \([x,y] = xy - yx\). If \([[\ldots [[\delta (x^{n_0}),x^{n_1}],x^{n_{2}}],\ldots ],x^{n_k}]=0\) for all \(x\in R\), where \(n_{0},n_{1},\ldots ,n_{k}\) are fixed positive integers, then one of the following conditions holds: (1) A is commutative; (2) \(C\cong GF(2)\), the Galois field of two elements; (3) there exist \(b\in Q\) and \(\lambda \in C\) such that \(\delta (x)=\sigma (x)b-bx\) for all \(x\in A\), \((b-\lambda )R=0\) and \(\sigma (R)=0\). The analogous result for left ideals is also obtained. Our theorems are natural generalizations of the well-known results for derivations obtained by Lanski (Proc Am Math Soc 125:339–345, 1997) and Lee (Can Math Bull 38:445–449, 1995).  相似文献   

5.
Let \(\Gamma \) denote a bipartite distance-regular graph with vertex set X, diameter \(D \ge 4\), and valency \(k \ge 3\). Let \({{\mathbb {C}}}^X\) denote the vector space over \({{\mathbb {C}}}\) consisting of column vectors with entries in \({{\mathbb {C}}}\) and rows indexed by X. For \(z \in X\), let \({{\widehat{z}}}\) denote the vector in \({{\mathbb {C}}}^X\) with a 1 in the z-coordinate, and 0 in all other coordinates. Fix a vertex x of \(\Gamma \) and let \(T = T(x)\) denote the corresponding Terwilliger algebra. Assume that up to isomorphism there exist exactly two irreducible T-modules with endpoint 2, and they both are thin. Fix \(y \in X\) such that \(\partial (x,y)=2\), where \(\partial \) denotes path-length distance. For \(0 \le i,j \le D\) define \(w_{ij}=\sum {{\widehat{z}}}\), where the sum is over all \(z \in X\) such that \(\partial (x,z)=i\) and \(\partial (y,z)=j\). We define \(W=\mathrm{span}\{w_{ij} \mid 0 \le i,j \le D\}\). In this paper we consider the space \(MW=\mathrm{span}\{mw \mid m \in M, w \in W\}\), where M is the Bose–Mesner algebra of \(\Gamma \). We observe that MW is the minimal A-invariant subspace of \({{\mathbb {C}}}^X\) which contains W, where A is the adjacency matrix of \(\Gamma \). We show that \(4D-6 \le \mathrm{dim}(MW) \le 4D-2\). We display a basis for MW for each of these five cases, and we give the action of A on these bases.  相似文献   

6.
7.
For a real-valued continuous function f(x) on \([0,\infty )\), we define
$$\begin{aligned} s(x)=\int _{0}^{x} f(u)du\quad \text {and}\quad \sigma _{\alpha } (x)= \int _{0}^{x}\left( 1-\frac{u}{x}\right) ^{\alpha }f(u)du \end{aligned}$$
for \(x>0\). We say that \(\int _{0}^{\infty } f(u)du\) is \((C, \alpha )\) integrable to L for some \(\alpha >-1\) if the limit \(\lim _{x \rightarrow \infty } \sigma _{\alpha } (x)=L\) exists. It is known that \(\lim _{x \rightarrow \infty } s(x) =L\) implies \(\lim _{x \rightarrow \infty }\sigma _{\alpha } (x) =L\) for all \(\alpha >-1\). The aim of this paper is twofold. First, we introduce some new Tauberian conditions for the \((C, \alpha )\) integrability method under which the converse implication is satisfied, and improve classical Tauberian theorems for the \((C,\alpha )\) integrability method. Next we give short proofs of some classical Tauberian theorems as special cases of some of our results.
  相似文献   

8.
The first main theorem of this paper asserts that any \((\sigma , \tau )\)-derivation d, under certain conditions, either is a \(\sigma \)-derivation or is a scalar multiple of (\(\sigma - \tau \)), i.e. \(d = \lambda (\sigma - \tau )\) for some \(\lambda \in \mathbb {C} \backslash \{0\}\). By using this characterization, we achieve a result concerning the automatic continuity of \((\sigma , \tau \))-derivations on Banach algebras which reads as follows. Let \(\mathcal {A}\) be a unital, commutative, semi-simple Banach algebra, and let \(\sigma , \tau : \mathcal {A} \rightarrow \mathcal {A}\) be two distinct endomorphisms such that \(\varphi \sigma (\mathbf e )\) and \(\varphi \tau (\mathbf e )\) are non-zero complex numbers for all \(\varphi \in \Phi _\mathcal {A}\). If \(d : \mathcal {A} \rightarrow \mathcal {A}\) is a \((\sigma , \tau )\)-derivation such that \(\varphi d\) is a non-zero linear functional for every \(\varphi \in \Phi _\mathcal {A}\), then d is automatically continuous. As another objective of this research, we prove that if \(\mathfrak {M}\) is a commutative von Neumann algebra and \(\sigma :\mathfrak {M} \rightarrow \mathfrak {M}\) is an endomorphism, then every Jordan \(\sigma \)-derivation \(d:\mathfrak {M} \rightarrow \mathfrak {M}\) is identically zero.  相似文献   

9.
Let \(\mathfrak {M}\) be a von Neumann algebra, and let \(\mathfrak {T}:\mathfrak {M} \rightarrow \mathfrak {M}\) be a bounded linear map satisfying \(\mathfrak {T}(P^{2}) = \mathfrak {T}(P)P + \Psi (P,P)\) for each projection P of \(\mathfrak {M}\), where \(\Psi :\mathfrak {M} \times \mathfrak {M} \rightarrow \mathfrak {M}\) is a bi-linear map. If \(\Psi \) is a bounded l-semi Hochschild 2-cocycle, then \(\mathfrak {T}\) is a left centralizer associated with \(\Psi \). By applying this conclusion, we offer a characterization of left \(\sigma \)-centralizers, generalized derivations and generalized \(\sigma \)-derivations on von Neumann algebras. Moreover, it is proved that if \(\mathfrak {M}\) is a commutative von Neumann algebra and \(\sigma :\mathfrak {M} \rightarrow \mathfrak {M}\) is an endomorphism, then every bi-\(\sigma \)-derivation \(D:\mathfrak {M} \times \mathfrak {M} \rightarrow \mathfrak {M}\) is identically zero.  相似文献   

10.
Inoue constructed the first examples of smooth minimal complex surfaces of general type with \(p_g=0\) and \(K^2=7\). These surfaces are finite Galois covers of the 4-nodal cubic surface with the Galois group, the Klein group \(\mathbb {Z}_2\times \mathbb {Z}_2\). For such a surface S, the bicanonical map of S has degree 2 and it is composed with exactly one involution in the Galois group. The divisorial part of the fixed locus of this involution consists of two irreducible components: one is a genus 3 curve with self-intersection number 0 and the other is a genus 2 curve with self-intersection number \(-\,1\). Conversely, assume that S is a smooth minimal complex surface of general type with \(p_g=0\), \(K^2=7\) and having an involution \(\sigma \). We show that, if the divisorial part of the fixed locus of \(\sigma \) consists of two irreducible components \(R_1\) and \(R_2\), with \(g(R_1)=3, R_1^2=0, g(R_2)=2\) and \(R_2^2=-\,1\), then the Klein group \(\mathbb {Z}_2\times \mathbb {Z}_2\) acts faithfully on S and S is indeed an Inoue surface.  相似文献   

11.
Let \(\varGamma \) be a distance-semiregular graph on Y, and let \(D^Y\) be the diameter of \(\varGamma \) on Y. Let \(\varDelta \) be the halved graph of \(\varGamma \) on Y. Fix \(x \in Y\). Let T and \(T'\) be the Terwilliger algebras of \(\varGamma \) and \(\varDelta \) with respect to x, respectively. Assume, for an integer i with \(1 \le 2i \le D^Y\) and for \(y,z \in \varGamma _{2i}(x)\) with \(\partial _{\varGamma }(y,z)=2\), the numbers \(|\varGamma _{2i-1}(x) \cap \varGamma (y) \cap \varGamma (z)|\) and \(|\varGamma _{2i+1}(x) \cap \varGamma (y) \cap \varGamma (z)|\) depend only on i and do not depend on the choice of y, z. The first goal in this paper is to show the relations between T-modules of \(\varGamma \) and \(T'\)-modules of \(\varDelta \). Assume \(\varGamma \) is the incidence graph of the Hamming graph H(Dn) on the vertex set Y and the set \({\mathcal {C}}\) of all maximal cliques. Then, \(\varGamma \) satisfies above assumption and \(\varDelta \) is isomorphic to H(Dn). The second goal is to determine the irreducible T-modules of \(\varGamma \). For each irreducible T-module W, we give a basis for W the action of the adjacency matrix on this basis and we calculate the multiplicity of W.  相似文献   

12.
Let \(\mathfrak g\) be a semisimple Lie algebra over a field \(\mathbb K\), \(\text{char}\left( \mathbb{K} \right)=0\), and \(\mathfrak g_1\) a subalgebra reductive in \(\mathfrak g\). Suppose that the restriction of the Killing form B of \(\mathfrak g\) to \(\mathfrak g_1 \times \mathfrak g_1\) is nondegenerate. Consider the following statements: ( 1) For any Cartan subalgebra \(\mathfrak h_1\) of \(\mathfrak g_1\) there is a unique Cartan subalgebra \(\mathfrak h\) of \(\mathfrak g\) containing \(\mathfrak h_1\); ( 2) \(\mathfrak g_1\) is self-normalizing in \(\mathfrak g\); ( 3) The B-orthogonal \(\mathfrak p\) of \(\mathfrak g_1\) in \(\mathfrak g\) is simple as a \(\mathfrak g_1\)-module for the adjoint representation. We give some answers to this natural question: For which pairs \((\mathfrak g,\mathfrak g_1)\) do ( 1), ( 2) or ( 3) hold? We also study how \(\mathfrak p\) in general decomposes as a \(\mathfrak g_1\)-module, and when \(\mathfrak g_1\) is a maximal subalgebra of \(\mathfrak g\). In particular suppose \((\mathfrak g,\sigma )\) is a pair with \(\mathfrak g\) as above and σ its automorphism of order m. Assume that \(\mathbb K\) contains a primitive m-th root of unity. Define \(\mathfrak g_1:=\mathfrak g^{\sigma}\), the fixed point algebra for σ. We prove the following generalization of a well known result for symmetric Lie algebras, i.e., for m=2: (a) \((\mathfrak g,\mathfrak g_1)\) satisfies ( 1); (b) For m prime, \((\mathfrak g,\mathfrak g_1)\) satisfies ( 2).  相似文献   

13.
The packing chromatic number \(\chi _{\rho }(G)\) of a graph G is the smallest integer k such that the vertex set of G can be partitioned into sets \(V_i\), \(i\in [k]\), where each \(V_i\) is an i-packing. In this paper, we investigate for a given triple (abc) of positive integers whether there exists a graph G such that \(\omega (G) = a\), \(\chi (G) = b\), and \(\chi _{\rho }(G) = c\). If so, we say that (abc) is realizable. It is proved that \(b=c\ge 3\) implies \(a=b\), and that triples \((2,k,k+1)\) and \((2,k,k+2)\) are not realizable as soon as \(k\ge 4\). Some of the obtained results are deduced from the bounds proved on the packing chromatic number of the Mycielskian. Moreover, a formula for the independence number of the Mycielskian is given. A lower bound on \(\chi _{\rho }(G)\) in terms of \(\Delta (G)\) and \(\alpha (G)\) is also proved.  相似文献   

14.
In most classical holomorphic function spaces on the unit disk in which the polynomials are dense, a function f can be approximated in norm by its dilates \(f_r(z):=f(rz)~(r<1)\). We show that this is not the case for the de Branges–Rovnyak spaces \(\mathcal{H}(b)\). More precisely, we exhibit a space \(\mathcal{H}(b)\) in which the polynomials are dense and a function \(f\in \mathcal{H}(b)\) such that \(\lim _{r\rightarrow 1^-}\Vert f_r\Vert _{\mathcal{H}(b)}=\infty \). On the positive side, we prove the following approximation theorem for Toeplitz operators on general de Branges–Rovnyak spaces \(\mathcal{H}(b)\). If \((h_n)\) is a sequence in \(H^\infty \) such that \(\Vert h_n\Vert _{H^\infty }\le 1\) and \(h_n(0)\rightarrow 1\), then \(\Vert T_{\overline{h}_n}f-f\Vert _{\mathcal{H}(b)}\rightarrow 0\) for all \(f\in \mathcal{H}(b)\). Using this result, we give the first constructive proof that, if b is a nonextreme point of the unit ball of \(H^\infty \), then the polynomials are dense in \(\mathcal{H}(b)\).  相似文献   

15.
Let \(L=-\mathrm{div}(A\nabla )\) be a second order divergence form elliptic operator and A an accretive \(n\times n\) matrix with bounded measurable complex coefficients in \({\mathbb R}^n\). Let \(\nabla b\in L^n({\mathbb R}^n)\,(n>2)\). In this paper, we prove that the commutator generated by b and the square root of L, which is defined by \([b,\sqrt{L}]f(x)=b(x)\sqrt{L}f(x)-\sqrt{L}(bf)(x)\), is bounded from the homogenous Sobolev space \({\dot{L}}_1^2({\mathbb R}^n)\) to \(L^2({\mathbb R}^n)\).  相似文献   

16.
A fundamental result by Gromov and Thurston asserts that, if M is a closed hyperbolic n-manifold, then the simplicial volume \(\Vert M\Vert \) of M is equal to \(\mathrm{Vol}(M)/v_n\), where \(v_n\) is a constant depending only on the dimension of M. The same result also holds for complete finite-volume hyperbolic manifolds without boundary, while Jungreis proved that the ratio \(\mathrm{Vol}(M)/\Vert M\Vert \) is strictly smaller than \(v_n\) if M is compact with nonempty geodesic boundary. We prove here a quantitative version of Jungreis’ result for \(n\ge 4\), which bounds from below the ratio \(\Vert M\Vert /\mathrm{Vol}(M)\) in terms of the ratio \(\mathrm{Vol}(\partial M)/\mathrm{Vol}(M)\). As a consequence, we show that, for \(n\ge 4\), a sequence \(\{M_i\}\) of compact hyperbolic n-manifolds with geodesic boundary satisfies \(\lim _i \mathrm{Vol}(M_i)/\Vert M_i\Vert =v_n\) if and only if \(\lim _i \mathrm{Vol}(\partial M_i)/\mathrm{Vol}(M_i)=0\). We also provide estimates of the simplicial volume of hyperbolic manifolds with geodesic boundary in dimension 3.  相似文献   

17.
Let E = E(a, b) be some Banach space of measurable functions on (a, b), I be the identity operator, and let \(\hat K\) be a Fredholm-type regular integral operator acting on E and \({\hat K_ \pm }\) be its triangular parts. We consider the representation \(I - \hat K = \left( {I - {{\hat K}_ - }} \right)\left( {I - \hat U} \right)\left( {I - {{\hat K}_ + }} \right)\), for some known classes of integral operators. In particular,we show that under certain conditions the operator \(\hat U\) is positive and its spectral radius satisfies the condition \(r\left( {\hat U} \right) < 1\). Also, we give some possible applications of the representation.  相似文献   

18.
We prove that for each prime p, positive integer \(\alpha \), and non-negative integers \(\beta \) and \(\gamma \), the Diophantine equation \(X^{2N} + 2^{2\alpha }5^{2\beta }{p}^{2\gamma } = Z^5\) has no solution with N, X, \(Z\in \mathbb {Z}^+\), \(N > 1\), and \(\gcd (X,Z) = 1\).  相似文献   

19.
Let A and B be two Banach function algebras and p a two variable polynomial \(p(z,w)=zw+az+bw+c\), (\(a,b,c\in {\mathbb {C}}\)). We characterize the general form of a surjection \(T: A \longrightarrow B\) which satisfies \(\mathrm{Ran}_\pi (p(Tf,Tg))\cap \mathrm{Ran}_\pi (p(f,g))\ne \emptyset , (f,g\in A\) and \(c\ne ab)\), where \(\mathrm{Ran}_\pi (f)\) is the peripheral range of f.  相似文献   

20.
In an earlier paper Buczolich, Elekes, and the author described the Hausdorff dimension of the level sets of a generic real-valued continuous function (in the sense of Baire category) defined on a compact metric space K by introducing the notion of topological Hausdorff dimension. Later on, the author extended the theory for maps from K to \({\mathbb {R}}^n\). The main goal of this paper is to generalize the relevant results for topological and packing dimensions and to obtain new results for sufficiently homogeneous spaces K even in the case case of Hausdorff dimension. Let K be a compact metric space and let us denote by \(C(K,{\mathbb {R}}^n)\) the set of continuous maps from K to \({\mathbb {R}}^n\) endowed with the maximum norm. Let \(\dim _{*}\) be one of the topological dimension \(\dim _T\), the Hausdorff dimension \(\dim _H\), or the packing dimension \(\dim _P\). Define
$$\begin{aligned} d_{*}^n(K)=\inf \left\{ \dim _{*}(K{\setminus } F): F\subset K \text { is } \sigma \text {-compact with } \dim _T F<n\right\} . \end{aligned}$$
We prove that \(d^n_{*}(K)\) is the right notion to describe the dimensions of the fibers of a generic continuous map \(f\in C(K,{\mathbb {R}}^n)\). In particular, we show that \(\sup \{\dim _{*}f^{-1}(y): y\in {\mathbb {R}}^n\} =d^n_{*}(K)\) provided that \(\dim _T K\ge n\), otherwise every fiber is finite. Proving the above theorem for packing dimension requires entirely new ideas. Moreover, we show that the supremum is attained on the left hand side of the above equation. Assume \(\dim _T K\ge n\). If K is sufficiently homogeneous, then we can say much more. For example, we prove that \(\dim _{*}f^{-1}(y)=d^n_{*}(K)\) for a generic \(f\in C(K,{\mathbb {R}}^n)\) for all \(y\in {{\mathrm{int}}}f(K)\) if and only if \(d^n_{*}(U)=d^n_{*}(K)\) or \(\dim _T U<n\) for all open sets \(U\subset K\). This is new even if \(n=1\) and \(\dim _{*}=\dim _H\). It is known that for a generic \(f\in C(K,{\mathbb {R}}^n)\) the interior of f(K) is not empty. We augment the above characterization by showing that \(\dim _T \partial f(K)=\dim _H \partial f(K)=n-1\) for a generic \(f\in C(K,{\mathbb {R}}^n)\). In particular, almost every point of f(K) is an interior point. In order to obtain more precise results, we use the concept of generalized Hausdorff and packing measures, too.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号