首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本文将代数方法(AM;Sun et al,J.Mol.Spectrosc.2002,215:93)和Rydberg-Klein-Rees(RKR)方法相结合,获得了基态6Li H和7Li D同位素分子的高振动激发态能谱和Rydberg-RKR势能.所得势能产生的振动能谱同实验数据及AM结果均很好相符.这套方法可以用来有效研究分子内长程相互作用势.  相似文献   

2.
He—LiH的从头算势能面   总被引:2,自引:0,他引:2  
采用超分子CCSD(T)方法和由键函数3s3p2d1f组成的大基组,计算得到了He—LiH体系的全程势能面。计算结果表明该势能面存在2个势阱:较深的势阱在Rm=4.25a0,阱深为177.53cm^-1,对应于线性He—LiH构型;较浅的势阱在Rm=10.0a0处,阱深仅为9.88cm^-1,对应于线性He—HLi构型。  相似文献   

3.
在kRoy与BenlStein的工作基础上,孙卫国等又建立了精确计算双原子分子离解能的新解析表达式.基于代数方法(AM)可以获得双原子分子的包含最高振动能级在内的所有高阶振动能级的精确数值这一事实,应用新公式研究了^7LiD分子C^1∑^+电子态的振动能谱和分子离解能,获得了与实验值符合得非常好的理论结果.  相似文献   

4.
利用SAC/SAC—CI方法,使用D95(d)、6-311G**及CC—PVTZ等基组,对LiH分子的基态(X^1∑^+)、第一激发态(A^1∑^+)及第二简并激发态(B^1П)的平衡结构和谐振频率进行了优化计算.通过对三个基组的计算结果的比较,得出了D95(d)基组为三个基组中的最优基组的结论;使用D95(d)基组,利用SAC的GSUM(Group Sum of Operators)方法对基态(X^1∑^+)、SAC—CI的GSUM方法对激发态(A^1∑^+和B ^1П)进行单点能扫描计算,用正规方程组拟合Murrell—Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X ^1∑^+)相对应的光谱常数,结果与实验数据较为一致.  相似文献   

5.
LiH,LiO和LiOH的分析势能函数与分子反应动力学   总被引:22,自引:9,他引:22       下载免费PDF全文
罗德礼  蒙大桥  朱正和 《物理学报》2003,52(10):2438-2442
基于相对论有效原子实势(RECP)和密度泛函(B3LYP/SDD)方法,优化得到了LiH,LiO和LiOH的分子结构;研究得到了LiH和LiO的Murrell-Sorbie分析势能函数以及LiOH的多体项展式分析势能函数,由势能函数导出了LiH,LiO和LiOH的离解能,分别为2.722eV,3.592eV和9.085eV,与实验值基本一致.在分析势能函数基础上,用准经典分子散射理论方法,研究了LiH与O的分子反应动力学.结果表明,碰撞反应是一个无阈能反应,即较低的初始平动能更有利于反应产物的形成,主要生 关键词: LiH LiOH 势能函数 分子反应动力学  相似文献   

6.
里德堡电子与基态原子的低能电子散射形成长程里德堡分子,这种分子具有大的轨道半径,丰富的振动能级和永久电偶极矩等特点。本文考虑铯里德堡ns态与(n-4)l(n为主量子数,l为角量子数且l2)近简并态的非绝热耦合与p-波共振现象,数值计算了长程铯里德堡分子的势能曲线。分析ns6s(n=32-36)态分子最外层势阱,研究了长程里德堡分子的势阱深度、平衡距离与主量子数n的关系,为实验研究长程里德堡分子提供理论依据。  相似文献   

7.
LiH分子X 1Σ+、 A 1Σ+和B 1Π态的势能函数   总被引:1,自引:0,他引:1  
利用SAC/SAC-CI方法,使用D95(d)、6-311G**及cc-PVTZ等基组,对LiH分子的基态(X1Σ+)、第一激发态(A1Σ+)及第二简并激发态(B1Π)的平衡结构和谐振频率进行了优化计算.通过对三个基组的计算结果的比较,得出了D95(d)基组为三个基组中的最优基组的结论;使用D95(d)基组,利用SAC的GSUM(GroupSumofOperators)方法对基态(X1Σ+)、SAC-CI的GSUM方法对激发态(A1Σ+和B1Π)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X1Σ+)相对应的光谱常数,结果与实验数据较为一致.  相似文献   

8.
使用“对称性匹配簇-组态相互作用方法”(SAC/SAC-CI),在多种基组下计算了7LiH分子X1Σ 、A1Σ 、B1Π及b3Π态的平衡几何,并将由“几何优化”得到的相应各态的平衡几何与“单点能扫描”得到的结果进行了比较。比较的结果表明,由“几何优化”得到的相应各态的平衡几何,与“单点能扫描”得到的结果存在着差异。分析的结果表明,在完全活性空间中,由“SAC/SAC-CI”方法进行“单点能扫描”得到的结果,比“几何优化”得到的结果更加合理。首次报告了使用6-311G(3df,3pd)基组进行“单点等扫描”得到的相应各态的平衡几何。其值分别是:基态(X1Σ )为0.1588 nm、单重态的第一激发态(A1Σ )为0.2487 nm、单重态的第二激发态(B1Π)为0.2434 nm、三重态的第二激发态(b3Π)为0.1958 nm。这一计算结果与实验值非常接近。还研究了从基态到上述相应各态的垂直激发能,在基态的平衡位置处,其值分别为(A1Σ ←X1Σ )3.613 eV(、B1Π←X1Σ )4.612 eV和(b3Π←X1Σ )4.233 eV。与其它理论计算结果进行比较后得出,本文的计算结果非常接近于使用很复杂的计算方法获得的结果。  相似文献   

9.
本文所导出的22个基态双原子分子HFACE势能函数,都具有正确的平衡性质和长程Van der Waals区域正确的渐近性质,表示了完整正确的分子势能曲线。  相似文献   

10.
在LeRoy与Bernstein的工作基础上,孙卫国等又建立了精确计算双原子分子离解能的新解析表达式.基于代数方法(AM)可以获得双原子分子的包含最高振动能级在内的所有高阶振动能级的精确数值这一事实,应用新公式研究了7LiD分子C1∑ 电子态的振动能谱和分子离解能,获得了与实验值符合得非常好的理论结果.  相似文献   

11.
BH分子基态和激发态解析势能函数和光谱性质   总被引:3,自引:0,他引:3       下载免费PDF全文
王新强  杨传路  苏涛  王美山 《物理学报》2009,58(10):6873-6878
运用多参考组态相互作用的方法和Dunning’s相关调和基函数并含扩散基的大基组aug-cc-pV5Z,获得了BH分子基态(X1Σ+)和6个电子激发态(a3П, A1П, B1Σ+, b3Σ+, b3 关键词: 势能曲线 解析势能函数 多参考组态相互作用方法 光谱常数  相似文献   

12.
根据群论及原子分子反应静力学的有关原理,推导出NaH和AlH分子基态(X^1Σ^+)的合理离解极限.使用密度泛函方法中的B3LYP、B3PW91和MPW1PW91方法,在6-311++G,6-311++G(3df,3pd),cc-pVQZ和aug-cc-pVQZ基组下对NaH和AlH分子的基态进行结构优化计算,使用优选的B3PW91/6-311++G(3df,3pd)对基态单点能扫描计算,然后用最小二乘法拟合Murrell-Sorbie函数,得到对应的势能函数参数及光谱常数.结果表明,采用Murrell-Sorbie函数计算所得的光谱常数与实验结果符合的很好,能精确地描述NaH和AlH分子基态的势能函数.  相似文献   

13.
熊晓玲  魏洪源  陈文 《物理学报》2012,61(1):121-126
应用群论及原子分子反应静力学方法推导了TiN分子基态(x~2∑)的离解极限.采用不同的密度泛函方法,包括BP86,B3P86,B3Lyp,B3PW91,分别选用不同的基组对TiN分子基态进行结构优化计算.通过比较得出使用BP86方法,对N原子使用D95V++(d,P)基组和Ti原子使用6-311++G~()基组时,计算得到的平衡几何结构、分子离解能和谐振频率与实验值符合得最好.并采用最小二乘法拟合改进的Murrell-Sorbie函数得到了相应电子态的完整势能函数.计算得到的光谱常数与实验光谱数据符合得很好.  相似文献   

14.
本文以aug-cc-pv5Z为基组, 采用考虑Davidson修正的多参考组态相互作用方法(MRCI+Q)得到了GeS分子基态(X1Σ+)和5个低激发态(11Σ, 11Δ, A1Π, 15Σ+, 25Σ+)的势能曲线. 计算结果表明: 25Σ+态为排斥态, 其余5个态为束缚态; 6个态有着共同的离解通道, 离解极限均为Ge(3P)+S(3P). 利用计算得到的势能曲线得了X1Σ+, 11Σ-, 11Δ, A1Π和15Σ+态的垂直跃迁能Te, 平衡键长Re, 离解能De, 谐振频率ωe, 非谐性常数ωexe及平衡位置的电偶极矩. X1Σ+态的Re 为2.034 Å, De 为5.728 eV, ωe为571.73 cm-1, ωexe为1.6816 cm-1, 平衡位置的电偶极矩为1.9593 Debye. 激发态11Σ, 11Δ, A1Π, 15Σ+的Te 依次为25904.81, 26209.22, 32601.19, 43770.26 cm-1; Re依次为2.313, 2.322, 2.188, 2.8790 Å; De依次为2.524, 2.487, 1.694, 0.3036 eV, ωe依次为358.90, 353.08, 376.32, 134.96 cm-1; ωexe依次为1.2421, 1.2151, 1.6608, 1.9095 cm-1; 平衡位置的电偶极矩依次为1.3178, 1.4719, 1.5917, -1.9785 Debye. 通过求解核运动的薛定谔方程得到了J=0时X1Σ+, 11Σ-, 11Δ, A1Π和15Σ+态前30个振动态的振动能级Gv和分子常数Bv, 得到的结果和已有的实验值及其他理论值符合较好.  相似文献   

15.
韩小萱  赵建明  李昌勇  贾锁堂 《物理学报》2015,64(13):133202-133202
本文介绍了半经典近似下的低能电子-原子散射理论, 引入贋势描述里德堡电子与基态原子的相互作用, 数值计算了铯原子nS (n=30-60)里德堡态与6S基态原子形成的长程里德堡分子的势能曲线. 并对最外层势阱进行分析, 获得长程里德堡分子的势阱深度、平衡距离与主量子数n的关系. 为实验制备里德堡分子并进一步分析其性质提供理论依据. 里德堡分子对外界非常敏感, 可用于微弱信号的检测.  相似文献   

16.
运用原子分子群表示方法,首先确定NaLi分子的电子基态(X^1∑^+).然后选用6—311++G(3df,2pd)基组优化计算得到NaLi分子基态(X^1∑^+)的平衡结构和离解能,采用电子相关QCISD(T)方法结合6—311++G(3df,2pd)基组对NaLi分子基态进行单点能扫描计算.最后用单点扫描计算值结合优化计算所得参数去拟合Murrell—Sorbie函数,得到了NaLi分子基态的势能函数.用该势能函数计算的光谱常数与实验结果符合得很好,表明拟合确定的势能函数能精确地描述基态NaLi分子的结构和性质.  相似文献   

17.
基于群论和量子力学计算,导出UC气体的基电子状态为^3П,其平衡核间距和离解能,分别为0.1852nm和4.5470eV。同时,用量子力学的MP2方法计算得到势能曲线,由此导出基电子状态的Murrell-Sorbie势能函数,并计算出能量,光谱和热力学性质,气态UC(X^3П)的标准生成烩△Hf为8.08.06J/mol,定容热容Cp为31.288J/mol,绝对熵S为235.76J/mol.K。  相似文献   

18.
基态UC2分子的结构和势能函数   总被引:5,自引:0,他引:5  
采用密度泛函理论 (DFT)的B3LYP方法和相对论有效原子实势理论模型 (RECP) ,对UC2 分子可能的结构进行优化计算 ,得到UC2 分子稳定构型为角形C -U -C(C2v) ;由微观可逆性原理 ,判断了UC2 分子的离解极限 ;并且导出了基态UC2 分子 (X 5B1)的多体项展式势能函数 ,其势能面等值图展现了C -U -C(C2v)稳定结构 ;根据势能面等值图 ,讨论了C +UC(X 3 П)反应和U +C2 (X 1∑+ g)反应的势能面静态特征  相似文献   

19.
HNO分子基态的结构与解析势能函数研究   总被引:1,自引:0,他引:1       下载免费PDF全文
赵俊  曾晖  朱正和 《物理学报》2011,60(11):113102-113102
应用群论及原子分子反应静力学的方法, 导出了HNO分子基态电子态和合理的离解极限.利用优选出的密度泛函理论B3LYP方法结合6-311G **优化计算了HNO分子基态的平衡结构和谐振频率.计算结果表明基态HNO分子稳定态为CS构型,电子组态为X1A',平衡核间距分别为RH-N=0.1065 nm,RN-O=0.1200 nm,键角∠H-N-O=108.60°,离解能De=15.379 eV.基态简正振动频率分别为:弯曲振动频率ν1=1575.6351 cm-1,对称伸缩振动频率ν2=1673.2890 cm-1,反对称伸缩振动频率ν3=2837.7856 cm-1.在此基础上,应用多体项展式理论导出了基态HNO分子的全空间解析势能函数,该势能函数等值势能图准确再现了HNO分子平衡结构和离解能. 关键词: 势能函数 光谱常数 密度泛函方法  相似文献   

20.
基态TiH2分子的结构与分析势能函数   总被引:4,自引:0,他引:4  
用密度泛函理论的B3lyp方法,Ti原子采用相对论有效实势(LanL2DZ)收缩价基函数,氢原子采用6-311 g**全电子基函数,对TiH2体系的结构进行优化计算.得到TiH2分子最稳态为C2v构型,电子状态为(C2v(X)3A2),平衡核间距,RTi-H=0.1789 nm,键角∠HTiH =123.365°,离解能:De=5.54216 eV.基态简正振动频υ(A1)=485.4150 cm-1,υ(B2)=1507.6533 cm-1,υ(A1)=1580.2361 cm-1.由微观过程的可逆性原理分析了分子的可能离解极限,并用多体项展式理论方法分别导出基态TiH2分子的势能函数,其等值势能面图准确地再现了TiH2分子的结构特征和离解能.由此讨论了TiH2分子反应的势能面静态特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号