首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air–water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi plate is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454–457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil–air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601–606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%.  相似文献   

2.
This work is devoted to study of the slip phenomenon between phases in water–oil two-phase flow in horizontal pipes. The emphasis is placed on the effects of input fluids flow rates, pipe diameter and viscosities of oil phase on the slip. Experiments were conducted to measure the holdup in two horizontal pipes with 0.05 m diameter and 0.025 m diameter, respectively, using two different viscosities of white oil and tap water as liquid phases. Results showed that the ratios of in situ oil to water velocity at the pipe of small diameter are higher than those at the pipe of big diameter when having same input flow rates. At low input water flow rate, there is a large deviation on the holdup between two flow systems with different oil viscosities and the deviation becomes gradually smaller with further increased input water flow rate.  相似文献   

3.
A state of the art review of two-phase void fraction models in smooth horizontal tubes is provided and a probabilistic two-phase flow regime map void fraction model is developed for refrigerants under condensation, adiabatic, and evaporation conditions in smooth, horizontal tubes. Time fraction information from a generalized probabilistic two-phase flow map is used to provide a physically based weighting of void fraction models for different flow regimes. The present model and void fraction models in the literature are compared to data from multiple sources including R11, R12, R134a, R22, R410A refrigerants, 4.26–9.58 mm diameter tubes, mass fluxes from 70 to 900 kg/m2 s, and a full quality range. The present model has a mean absolute deviation of 3.5% when compared to the collected database.  相似文献   

4.
We detect the flow structures of a horizontal oil–water two-phase flow in a 20 mm inner-diameter pipe using 8-channels radial mini-conductance probes. In particular, we present an experimental flow pattern map that includes 218 flow conditions and compare this map to the flow pattern transitional boundaries predicted by published models. In addition, using the Adaptive Optimal Kernel Time–Frequency Representation, we analyze the conductance fluctuating signals and characterize the flow pattern in terms of the total energy and dominant frequency. Based on the liquid holdup measurements using the quickly closing valve technology combined with three parallel-wire capacitance probes, we investigate the slip effect between the oil and water phases under various flow conditions. The results show that the flow structures greatly affect the slippage, and the slip ratio is sensitive to flow pattern variations.  相似文献   

5.
Evaluation of wall slip phenomena during the horizontal pipeline flow of air/lubricating grease mixtures was investigated. With this aim, pressure drop measurements have been carried out along pipelines with different diameter and roughness. A modified Jastrzebski's equation for the slip velocity, based on the introduction of the relative roughness, has been used to correct wall slip effects for a lithium lubricating grease/air system. This expression has been introduced in the classical Rabinowitsch–Mooney treatment and applied to the superficial liquid velocity instead of the single-phase average velocity following a single-phase treatment analogy. Thus, the non-slip flow curve data for the two-phase mixture were obtained from roughened pipes and compared with those obtained from pipes with smooth internal surfaces. The effect of air on the extension of wall slip has been established as a function of air flow rate. Thus, the consideration of the reduction of the wetted pipe surface as air is injected allows an adequate explanation of this phenomenon, confirmed by the reduction of the effective slip contribution on the observed apparent shear rate. A power-law relationship between the slip velocity and the wall shear stress has been deduced, although this tends asymptotically to linearity as air flow rate is increased.  相似文献   

6.
Gamma densitometry is a frequently used non-intrusive method for measuring component volume fractions in multiphase flow systems. The application of a single-beam gamma densitometer to investigate oil–water flow in horizontal and slightly inclined pipes is presented. The experiments are performed in a 15 m long, 56 mm diameter, inclinable stainless steel pipe using Exxsol D60 oil (viscosity 1.64 mPa s, density 790 kg/m3) and water (viscosity 1.0 mPa s, density 996 kg/m3) as test fluids. The test pipe inclination is changed in the range from 5° upward to 5° downward. Experimental measurements are reported at three different mixture velocities, 0.25, 0.50 and 1.00 m/s, and the inlet water cut is varied from 0 to 1. The gamma densitometer is composed of radioactive isotope of Am-241 with the emission energy of 59.5 keV, scintillation detector [NaI(Tl)] and signal processing system. The time averaged cross-sectional distributions of oil and water phases are measured by traversing the gamma densitometer along the vertical pipe diameter. Based on water volume fraction measurements, water hold-up and slip ratio are estimated. The total pressure drop over the test section is measured and frictional pressure drop is estimated based on water hold-up measurements. The measurement uncertainties associated with gamma densitometry are also discussed. The measured water hold-up and slip ratio profiles are strongly dependent on pipe inclination. In general, higher water hold-up values are observed in upwardly inclined pipes compared to the horizontal and downwardly inclined pipes. At low mixture velocities, the slip ratio decreases as the water cut increases. The decrease is more significant as the degree of inclination increases. The frictional pressure drop for upward flow is slightly higher than the horizontal flow. In general, there is a marginal difference in frictional pressure drop values for horizontal and downwardly inclined flows.  相似文献   

7.
Particle tracking velocimetry (PTV) is applied to a bubbly two-phase turbulent flow in a horizontal channel at Re = 2 × 104 to investigate the turbulent shear stress profile which had been altered by the presence of bubbles. Streamwise and vertical velocity components of liquid phase are obtained using a shallow focus imaging method under backlight photography. The size of bubbles injected through a porous plate in the channel ranged from 0.3 to 1.5 mm diameter, and the bubbles show a significant backward slip velocity relative to liquid flow. After bubbles and tracer particles are identified by binarizing the image, velocity of each phase and void fraction are profiled in a downstream region. The turbulent shear stress, which consists of three components in the bubbly two-phase flow, is computed by analysis of PTV data. The result shows that the fluctuation correlation between local void fraction and vertical liquid velocity provides a negative shear stress component which promotes frictional drag reduction in the bubbly two-phase layer. The paper also deals with the source of the negative shear stress considering bubble’s relative motion to liquid.  相似文献   

8.
In this article, dispersed flow of viscous oil and water is investigated. The experimental work was performed in a 26.2-mm-i.d. 12-m-long horizontal glass pipe using water and oil (viscosity of 100 mPa s and density of 860 kg/m3) as test fluids. High-speed video recording and a new wire-mesh sensor based on capacitance (permittivity) measurements were used to characterize the flow. Furthermore, holdup data were obtained using quick-closing-valves technique (QCV). An interesting finding was the oil-water slip ratio greater than one for dispersed flow at high Reynolds number. Chordal phase fraction distribution diagrams and images of the holdup distribution over the pipe cross-section obtained via wire-mesh sensor indicated a significant amount of water near to the pipe wall for the three different dispersed flow patterns identified in this study: oil-in-water homogeneous dispersion (o/w H), oil-in-water non-homogeneous dispersion (o/w NH) and Dual continuous (Do/w & Dw/o). The phase slip might be explained by the existence of a water film surrounding the homogeneous mixture of oil-in-water in a hidrofilic-oilfobic pipe.  相似文献   

9.
To determine the void fraction in a tube of a rotating heat exchanger, an analytical investigation was undertaken to model frictionless two-phase flow boiling. Steady, one-dimensional separated two-phase conservation equations in differential form, were first applied to a stationary system. The equations were integrated between the inlet and exit of the flow channel to yield three coupled algebraic equations. The algebraic equations were then modified to represent rotating systems. To obtain closure, the velocity ratio, mass quality and void fraction are defined as a function of pressure.

A numerical technique was used to solve the equations. Sample results are presented in a graph of mass quality versus void fraction. The graph demonstrates that a minimum heat input must be exceeded to change from a single-phase flow to saturated two-phase flow boiling. Also, the void fraction was found to increase for increasing heat input, decreasing mass flow rate, increasing inlet mass quality and decreasing pressure difference between the inlet and exit.  相似文献   


10.
This paper has investigated the water holdup and the pressure gradient of water-lubricated transport of high-viscosity oil flow in horizontal pipes. Experimental results on the water holdup and the pressure gradient of water-lubricated high-viscosity oil two-phase flow in a horizontal 1 in. pipe were discussed. Models for the prediction of the water holdup and/or the pressure gradient of core flow or water-lubricated flow were reviewed and evaluated. It was found that the water holdup of the water-lubricated flow is not only closely related to the input water volume fraction but also the degree of the oil phase eccentricity which is attributed to the oil phase Froude number. This can explain the inconsistency of the experimental results with regard to the relationship between the water holdup and the input water volume fraction in the literature. The applicability of the existing empirical or mechanistic models of water-lubricated high-viscosity oil flow were discussed and demonstrated. A modified correlation to the water holdup correlation of Arney et al. (1993) which was shown to be exclusively applicable for concentric core flow was introduced for stable water-lubricated flow, including both concentric and eccentric core flows. This correlation was evaluated and a fair applicability was shown. The accuracy of different models for the prediction of the pressure gradient of water-lubricated transport of high-viscosity oil was demonstrated to be not high in general. This is closely associated with the difficulty in accurately accounting for the influence of oil fouling on the pressure gradient.  相似文献   

11.
In this study, an inverse-problem method was applied to estimate the solid concentration in a solid–liquid two-phase flow. An algebraic slip mixture model was introduced to solve the forward problem of solid–liquid convective heat transfer. The time-average conservation equations of mass, momentum, energy, as well as the volume fraction equation were computed in a computational fluid dynamics (CFD) simulation. The solid concentration in the CFD model was controlled using an external program that included the inversion iteration, and an optimal estimation was performed via experimental measurements. Experiments using a fly-ash–water mixture and sand–water mixture with different solid concentrations in a horizontal pipeline were conducted to verify the accuracy of the inverse-problem method. The estimated results were rectified using a method based on the relationship between the estimated results and estimation error; consequently, the accuracy of the corrected inversion results improved significantly. After a verification through experiments, the inverse-problem method was concluded to be feasible for predicting the solid concentration, as the estimation error of the corrected results was within 7% for all experimental samples for a solid concentration of less than 50%. The inverse-problem method is expected to provide accurate predictions of the solid concentration in solid–liquid two-phase flow systems.  相似文献   

12.
13.
刘赵淼  刘佳  申峰 《力学学报》2015,47(2):223-230
研究了不同重力条件下90°弯管内气液两相流流型分布形态及流动特性. 通过建立90°弯管内气液两相流流动的三维数学物理模型,采用VOF 方法,对10-6g0, 10-4g0, 10-2g0, 1g0 (g0= 9.8m/s2) 重力下的90°弯管内气液两相流流型分布特征、截面空隙率、滑速比及气相尾部最大斜向角进行了比较分析. 研究结果表明:所建立的模型能够正确模拟不同重力条件下90°弯管内气液两相流流型和截面空隙率,并得到气液两相弯管二次流与单相二次流的不同特性. 随着重力水平的提高,90°弯管对气相流型的影响作用减弱,气相整体向弯管内侧积聚靠拢,弯管对尾部的斜向作用减弱.   相似文献   

14.
Using the multivision technique, a new void fraction measurement method was developed for bubble and slug flow in a small channel. The multivision system was developed to obtain images of the two-phase flow in two perpendicular directions. The obtained images were processed—using image segmentation, image subtraction, Canny edge detection, binarization, and hole filling—to extract the phase boundaries and information about the bubble or slug parameters. With the extracted information, a new void fraction measurement model was developed and used to determine the void fraction of the two-phase flow. The proposed method was validated experimentally in horizontal and vertical channels with different inner diameters of 2.1, 2.9, and 4.0 mm. The proposed method of measuring the void fraction has better performance than the methods that use images acquired in only one direction, with a maximum absolute difference between the measured and reference values of less than 6%.  相似文献   

15.
实验研究了水平条件下20mm管径油水两相流的流动特性对阻抗式含水率计测量的影响.首先利用阻抗式含水率计测量不同含水率和流量条件下的混合物电阻率,并使用高速摄像记录对应的流型特征,进而分析流型对测量值的影响.通过对低、高流量分别采用电学和流体动力学模型分析后发现:低流量下混合物电阻率的主要影响因素是油水两相之间的速度滑脱,采用双流体动力学模型能有效地反映其变化规律.而高流量下(水包油分散流时)速度滑脱很小可以忽略,油水两相的空间结构对混合物电阻率的影响是问题的关键.近似绝缘的油滴分散在导电的水中形成的含孔导体电阻率高于实心导体,适用的电学模型是Maxwell电阻率模型.  相似文献   

16.
通过气液两相螺旋流实验仪器,研究具有可降解性的天然椰子油新型添加剂对于气液两相螺旋流流型影响以及流型的转变规律,并与表面活性剂十二烷基苯磺酸钠(SDBS)进行对比研究。实验工况设定为:实验介质为空气和水,含气率10%~90%,气相折算速度0.01~4.0m/s,液相折算速度0.01~4.0m/s,表面活性剂采用从植物提取的可降解性椰子油和SDBS,起旋装置为叶轮。实验观察到天然椰子油对于螺旋轴状流、螺旋团状流、螺旋弥散流转换特性的影响与SDBS的效果相类似,该三种流型发生条件相比于以往都有所提前,且存在范围被拓宽。浓度为500ppm时椰子油体系下的主要流型为螺旋弥散流,而SDBS体系下则以螺旋团状流为主。  相似文献   

17.
The trapped saturations of oil and gas are measured as functions of initial oil and gas saturation in water-wet sand packs. Analogue fluids—water, octane and air—are used at ambient conditions. Starting with a sand-pack column which has been saturated with brine, oil (octane) is injected with the column horizontal until irreducible water saturation is reached. The column is then positioned vertically and air is allowed to enter from the top of the column, while oil is allowed to drain under gravity for varying lengths of time. At this point, the column may be sliced and the fluids analyzed by gas chromatography to obtain the initial saturations. Alternatively, brine is injected through the bottom of the vertical column to trap oil and gas, before slicing the columns and measuring the trapped or residual saturations by gas chromatography and mass balance. The experiments show that in three-phase flow, the total trapped saturations of oil and gas are considerably higher than the trapped saturations reported in the literature for two-phase systems. It is found that the residual saturation of oil and gas combined could be as high as 23 %, as opposed to a maximum two-phase residual of only 14 %. For very high initial gas saturations, the residual gas saturation, up to 17 %, was also higher than for two-phase displacement. These observations are explained in terms of the competition between piston-like displacement and snap-off. It is also observed that less oil is always trapped in three-phase flow than in two-phase displacement, and the difference depends on the amount of gas present. For low and intermediate initial gas saturations, the trapped gas saturation rises linearly with initial saturation, followed by a constant residual, as seen in two-phase displacements. However, at very high initial gas saturations, the residual saturation rises again.  相似文献   

18.
A drift-flux correlation has been often used to predict void fraction of gas-liquid two-phase flow in a horizontal channel due to its simplicity and practicality. The drift-flux correlation includes two important drift-flux parameters, namely, the distribution parameter and void-fraction-weighted-mean drift velocity. In this study, an extensive literature survey for horizontal two-phase flow is conducted to establish void fraction database and to acquire existing drift-flux correlations. A total of 566 data is collected from 12 data sources and 4 flow-regime-dependent and 1 flow-regime-independent drift-flux correlations are identified. The predictive capability of the existing drift-flux correlations is assessed using the collected data. It is pointed out that the drift velocity determined by a regression analysis may include a significant error due to a compensation error between distribution parameter and drift velocity. In this study, a simple flow-regime-independent drift-flux correlation is developed. In the modeling approach, the void-fraction-weighted mean drift velocity is approximated to be 0 m/s, whereas the distribution parameter is given as a simple function of the ratio of non-dimensional superficial gas velocity to non-dimensional mixture volumetric flux. The newly developed correlation shows an excellent predictive capability of void fraction for horizontal two-phase flow. Mean absolute error (or bias), standard deviation (random error), mean relative deviation and mean absolute relative deviation of the correlation are 0.0487, 0.0985, 0.0758 and 0.206, respectively. The prediction accuracy of the correlation is similar to the correlation of Chexal et al. (1991), which was formulated based on the drift-flux parameters by means of many cascading constitutive relationships with numerous empirical parameters.  相似文献   

19.
A study of the stability of an electrically heated single channel, forced convection horizontal system was conducted by using Freon-11 as the test fluid. Two major modes of oscillations, namely, density-wave type (high frequency) and pressure-drop type (low frequency) oscillations have been observed. The steady-state operating characteristics and stable and unstable regions are determined as a function of heat flux, exit orifice diameter and mass flow rate. Different modes of oscillations and their characteristics have been investigated. The effect of the exit restriction on the system stability has also been studied.A mathematical model has been developed to predict the transient behavior of boiling two-phase systems. The model is based on homogenous flow assumption and thermodynamic equilibrium between the liquid and vapor phases. The transient characteristics of boiling two-phase flow horizontal system are obtained for various heat inputs, flow rates and exit orifice diameters by perturbing the governing equations around a steady state. Theoretical and experimental results have been compared.  相似文献   

20.
In the present paper, we have investigated experimentally the influence of both the temperature and the particle size on the dynamic viscosities of two particular water-based nanofluids, namely water–Al2O3 and water–CuO mixtures. The measurement of nanofluid dynamic viscosities was accomplished using a ‘piston-type’ calibrated viscometer based on the Couette flow inside a cylindrical measurement chamber. Data were collected for temperatures ranging from ambient to 75 °C, for water–Al2O3 mixtures with two different particle diameters, 36 nm and 47 nm, as well as for water–CuO nanofluid with 29 nm particle size. The results show that for particle volume fractions lower than 4%, viscosities corresponding to 36 nm and 47 nm particle-size alumina–water nanofluids are approximately identical. For higher particle fractions, viscosities of 47 nm particle-size are clearly higher than those of 36 nm size. Viscosities corresponding to water-oxide copper are the highest among the nanofluids tested. The temperature effect has been investigated thoroughly. A more complete viscosity data base is presented for the three nanofluids considered, with several experimental correlations proposed for low particle volume fractions. It has been found that the application of Einstein’s formula and those derived from the linear fluid theory seems not to be appropriate for nanofluids. The hysteresis phenomenon on viscosity measurement, which is believed to be the first observed for nanofluids, has raised serious concerns regarding the use of nanofluids for heat transfer enhancement purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号