首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文用置换-扩散法合成了三元储氢合金材料Mg_2Ni_(0.75)Cu_(0.25),并对合成的样品进行了吸、放氢性能测试。结果表明,它与氢的反应是可逆的,氢化产物的热分解温度较Mg_2NiH_4有明显的降低。本法合成的样品与冶炼法合成的样品相比较,具有易于活化,吸、放氢速度明显加快等优点。  相似文献   

2.
分别以SiO2,TiO2,γ-Al2O3,TiO2-SiO2和TiO2-Al2O3为载体,以硝酸镍为镍源,采用等体积浸渍法制备了一系列镍基催化剂,并将其用于苯酐选择性加氢合成苯酞反应.结果表明,以TiO2-SiO2为载体制备的镍催化剂上Ni0活性组分分散度较高,催化剂表现出较高的活性和苯酞选择性.在此基础上,采用溶胶-凝胶法制备出了一系列Ni/TiO2-SiO2催化剂,考察了催化剂制备中各因素(包括溶剂、焙烧温度、还原温度和镍前驱体类型等)对其催化苯酐加氢反应性能的影响.结果表明,将镍前驱体溶于不同溶剂制备的催化剂性能差异很大,其中以水为溶剂制备的催化剂活性较高,且性能优于等体积浸渍法制备的相应催化剂.焙烧温度和还原温度过高会导致活性组分镍晶粒度变大,致使催化剂活性明显降低.镍源对Ni/TiO2-SiO2催化剂的性能影响较大,以硫酸镍为镍源制备的催化剂几乎无活性,而以氯化镍和硝酸镍为镍源制备的催化剂表现出较高的催化活性和选择性,其中以氯化镍制备的催化剂性能略高于硝酸镍,苯酐转化率为100%,苯酞选择性为88.5%.  相似文献   

3.
采用固溶烧结法制备了Mg_2Ni_(1-x)Co_x(x=0.10,0.15,0.20)合金,利用X射线衍射仪和压力-组成-温度测试仪等研究了Co含量对合金相结构和储氢性能的影响.结果表明,合金由Mg_2Ni型Mg_2(Ni,Co)主相及少量Mg和Mg Ni3Co新相组成.Mg2(Ni,Co)具有良好的可逆储氢性能,吸氢形成Mg_2Ni_(0.9)Co_(0.1)H_4型四元氢化物,其具有与父系氢化物HT-Mg_2NiH_4相近的放氢焓变(ΔHd=63.9 k J/mol H2).Mg_2Ni_(1-x)Co_x(x=0.10,0.15,0.20)合金具有良好的放氢动力学性能,二维相界面迁移为放氢过程的控制步骤.随着Co含量的增加,合金的放氢活化能(Ea)降低,其中,Mg_2Ni_(0.8)Co_(0.2)的Ea降低到54.0 k J/mol.  相似文献   

4.
本文报导了一个新发现的H_2置换Ni(100)面上化学吸附CO的表面反应.CO分子在Ni(100)面上的化学吸附(吸附热为126J/mole)比氢的原子吸附(吸附热为96kJ/mole)强得多,在通常条件下,H_2不能置换Ni(100)面上化学吸附的CO.但是当H_2压高于1×10~(-4)乇时,在温度为270~330K的范围内可引起H_2置换化学吸附CO的表面反应.本文用荧光产率近边吸收谱(FYNES)和程序升温脱附(TPD)对H_2置换化学吸附CO的表面反应动力学进行了详细的研究.FYNES谱在原理上与NEXAFS相同,通过测量含碳受激分子在弛豫过程中释放的碳—Kα荧光产率代替测量Auger电子产率,所以可在有气氛压力下对表面反应动力学过程进行原位考察.实验结果表明,在氢压为10~(-4)至10~(-1)乇和单晶温度为270至330K范围内,置换反应的速度公式可表示为:-dθ/dt=kθP_(H2)~(0:4)式中θ为CO的表面覆盖度,P_(H2)为气相氢压.置换反应是一个热活化过程,它随CO覆盖度的降低显示出二个不同的动力学区域,置换反应的活化能在高覆盖度下为29±4kJ/mole,在低覆盖度下为46±4kJ/mole.这比CO在Ni(100)面上的吸附热105~126kJ/mole约低75~80J/mole.本文对置换反应的控制步骤和H_2置换的机理进行了讨论  相似文献   

5.
镍盐前体对Ni/γ-Al2O3催化剂催化加氢活性的影响   总被引:2,自引:0,他引:2  
用X射线衍射、紫外-可见漫反射光谱、程序升温还原、CO化学吸附和微反应测试等方法研究了不同镍盐前体制备的负载型Ni/γ-Al2O3催化剂的结构和催化α-蒎烯加氢活性.结果表明,用醋酸镍前体制备的催化剂的催化加氢活性远高于用硝酸镍前体制备的催化剂,并且这种催化加氢活性的差异与不同前体制备的Ni O/γ-Al2O3样品表面Ni2 的分散状态及还原度密切相关.当Ni2 负载量远低于其在γ-Al2O3载体表面上的分散容量时,Ni2 优先嵌入载体表面四面体空位,随着Ni2 负载量的增加,嵌入载体表面八面体空位的Ni2 的比例增大.由于醋酸根阴离子对γ-Al2O3载体表面四面体空位的屏蔽效应大于硝酸根阴离子,在醋酸镍前体制备的Ni O/γ-Al2O3样品表面,Ni2 倾向于嵌入载体表面八面体空位且易被还原为金属态Ni0,故用醋酸镍前体制备的Ni/γ-Al2O3催化剂的催化α-蒎烯加氢活性高于用硝酸镍前体制备的催化剂.  相似文献   

6.
采用浸渍法制备了二氧化钛负载镍催化剂. 通过控制还原温度(200-400 ℃), 在TiO2上得到不同氧化态的镍颗粒. 结果发现, 乙腈气相加氢反应受镍氧化态的影响, 300 ℃下还原的催化剂表现出最高的乙腈转化活性, 100 ℃时将乙腈完全转化. 产物产率受到Ni/TiO2催化剂酸性的影响, 而催化剂的酸性不仅受到TiO2载体的影响, 还受到负载物Ni 颗粒性质的影响. 随着催化剂还原温度升高, 金属态镍逐渐出现在催化剂表面, 降低了催化剂的酸性强度, 使三乙胺的最大产率升高(从34%升高到48%左右). 研究还发现在Ni/TiO2催化乙腈加氢反应中, 三乙胺是初始产物. Ni 的状态不仅影响乙腈的转化, 还影响产物的脱附. 提出了乙腈加氢的第一步反应机理.  相似文献   

7.
以天然层状黏土蒙脱石(MMT)为前体,通过液相沉积-沉淀将镍物种引入水溶液中剥离为MMT纳米片表面的简易方法制得Ni/MMT纳米片。该Ni/MMT纳米片由于是二维(2D)结构,利于芳烃及其加氢产物的传质扩散,相比Ni/SBA-15和Ni/γ-Al2O3催化剂,具有更为高效的芳烃加氢性能,且在镍负载量高达18.5%时,其四氢萘加氢的转化频率(TOF)达到最高值。  相似文献   

8.
采用等体积浸渍法制备了Ni/TiO2催化剂,考察了焙烧和还原温度对其结构及催化对硝基苯酚加氢合成对氨基苯酚反应性能的影响,利用X射线衍射、程序升温还原及H2化学吸附等方法对催化剂进行了表征.结果表明,923 K以下焙烧制备的催化剂中镍物种主要以与载体相互作用不同的NiO形式存在,随着焙烧温度的升高,催化剂中NiO与TiO2间的相互作用增强.经723 K还原后,随焙烧温度升高,催化剂的H2化学吸附量减小,而923 K焙烧的催化剂具有较佳的加氢反应性能,这与金属镍和TiOx(x<2)的协同作用有关.对于923 K焙烧的催化剂,当还原温度较低时,NiO还原不完全,金属镍与TiOx的相互作用较弱,催化剂活性较低;当还原温度过高时,镍晶粒发生烧结,并且催化剂的镍活性表面因镍与TiOx的相互作用增强而减小,从而导致催化剂活性降低,适宜的还原温度为673 K.当Ni/TiO2催化剂具有适宜的镍活性表面及适宜的金属镍与TiOx相互作用时,金属镍与TiOx的协同对-NO2的加氢活化最为有利.  相似文献   

9.
开发高活性的顺酐加氢制丁二酸酐和γ-丁内酯催化剂具有重要的工业意义.顺酐加氢多采用Cu基和Ni基催化剂,但一般Cu基和Ni基催化剂存在反应温度高(170–260°C)和稳定性差等缺点,很有必要开发高活性的顺酐加氢催化剂.我们以拟薄水铝石作为Al_2O_3载体的前驱体,采用浸渍法制备了一系列镍铝尖晶石型衍生的不同Ni含量的Ni/Al_2O_3催化剂,并研究了它们在顺酐加氢反应中的催化性能.还原前Ni/Al_2O_3催化剂的X射线衍射结果表明,催化剂含有NiAl_2O_4物种.氮吸附结果显示,不同Ni含量的催化剂均具有介孔结构.氢-程序升温还原研究发现,Ni/Al_2O_3催化剂经750°C还原2 h后,其表面上NiAl_2O_4物种能被高效还原.X射线粉末衍射结果表明,750°C还原的Ni/Al_2O_3催化剂中金属Ni颗粒尺寸随着Ni负载量升高而增大.利用一氧化碳-程序升温脱附对750°C还原的Ni/Al_2O_3催化剂进行研究,发现750°C还原的催化剂上金属Ni物种含量从高到低依次为:Ni(7.5%)/Al_2O_3Ni(5%)/Al_2O_3Ni(2.5%)/Al_2O_3.采用CO化学吸附获得的Ni(2.5%)/Al_2O_3,Ni(5%)/Al_2O_3和Ni(7.5%)/Al_2O_3催化剂上金属Ni颗粒尺度分别为8.0,12.8和15.7 nm.活性研究结果表明,750°C还原的Ni(5%)/Al_2O_3催化剂具有最高的催化活性,这可能是由于Ni(5%)/Al_2O_3催化剂具有较多的Ni活性位点和较合适的Ni颗粒粒度所致.进一步研究发现,在650–750°C还原温度下,Ni(5%)/Al_2O_3催化剂的还原度随着还原温度的升高而升高,Ni分散度随着还原温度的升高而降低.活性结果研究表明,700°C还原的Ni(5%)/Al_2O_3催化剂具有较多的Ni活性位点和较合适的Ni颗粒粒度,具有最高的加氢催化活性,其在120°C,H_2压力为0.5 MPa和质量空速为2 h~(-1)的反应条件下,能获得近100%的顺酐转化率和90%的丁二酸酐选择性,同时该催化剂具有优良的稳定性.以上结果表明,尖晶石型衍生的Ni/Al_2O_3催化剂是一个十分有应用前景的顺酐加氢催化剂.  相似文献   

10.
采用浸渍法制备了一系列负载的Ni催化剂,用于糠醛选择性加氢反应.用XRD、TPR等手段对Ni/γ-Al2O3样品进行了表征.结果表明,Ni负载量在5~|15%范围内,高度分散于载体γ-Al2O3表面,Ni负载量进一步提高到20%,则在载体表面聚集成为微晶.在10%Ni/γ-Al2O3样品上提高焙烧温度有利于Ni的前驱体分解且高度分散于载体表面.Ni2 与γ-Al2O3存在较强的相互作用,但这种相互作用随着Ni负载量的增加而逐渐减弱,随着焙烧温度的增加而逐渐增强.与其他载体负载的Ni催化剂相比,Ni/γ-Al2O3由于其大的表面和适当的表面结构,在糠醛加氢反应中表现出一定的活性和较高的选择性,且随着Ni负载量的增加,活性逐渐增强,但选择性有所下降.另外催化剂的焙烧温度、还原温度,反应温度和溶剂对该反应均有较大影响,采用极性有机溶剂,适宜的焙烧和还原温度有利于催化剂活性和选择性的提高.  相似文献   

11.
开发高活性的顺酐加氢制丁二酸酐和γ-丁内酯催化剂具有重要的工业意义.顺酐加氢多采用Cu基和Ni基催化剂,但一般Cu基和Ni基催化剂存在反应温度高(170–260℃)和稳定性差等缺点,很有必要开发高活性的顺酐加氢催化剂.我们以拟薄水铝石作为Al2O3载体的前驱体,采用浸渍法制备了一系列镍铝尖晶石型衍生的不同Ni含量的Ni/Al2O3催化剂,并研究了它们在顺酐加氢反应中的催化性能.还原前Ni/Al2O3催化剂的X射线衍射结果表明,催化剂含有NiAl2O4物种.氮吸附结果显示,不同Ni含量的催化剂均具有介孔结构.氢-程序升温还原研究发现,Ni/Al2O3催化剂经750℃还原2 h后,其表面上NiAl2O4物种能被高效还原.X射线粉末衍射结果表明,750℃还原的Ni/Al2O3催化剂中金属Ni颗粒尺寸随着Ni负载量升高而增大.利用一氧化碳-程序升温脱附对750℃还原的Ni/Al2O3催化剂进行研究,发现750℃还原的催化剂上金属Ni物种含量从高到低依次为:Ni(7.5%)/Al2O3>Ni(5%)/Al2O3>Ni(2.5%)/Al2O3.采用CO化学吸附获得的Ni(2.5%)/Al2O3,Ni(5%)/Al2O3和Ni(7.5%)/Al2O3催化剂上金属Ni颗粒尺度分别为8.0,12.8和15.7 nm.活性研究结果表明,750℃还原的Ni(5%)/Al2O3催化剂具有最高的催化活性,这可能是由于Ni(5%)/Al2O3催化剂具有较多的Ni活性位点和较合适的Ni颗粒粒度所致.进一步研究发现,在650–750℃还原温度下,Ni(5%)/Al2O3催化剂的还原度随着还原温度的升高而升高,Ni分散度随着还原温度的升高而降低.活性结果研究表明,700℃还原的Ni(5%)/Al2O3催化剂具有较多的Ni活性位点和较合适的Ni颗粒粒度,具有最高的加氢催化活性,其在120℃,H2压力为0.5 MPa和质量空速为2 h?1的反应条件下,能获得近100%的顺酐转化率和90%的丁二酸酐选择性,同时该催化剂具有优良的稳定性.以上结果表明,尖晶石型衍生的Ni/Al2O3催化剂是一个十分有应用前景的顺酐加氢催化剂.  相似文献   

12.
研究了通过镍催化转移缩聚的方法来合成全氟环丁基芳基醚聚合物.首先,我们以对溴苯酚和1,2-二溴四氟乙烷为起始原料,通过两步反应得到对溴三氟乙烯基芳基醚,进一步加热环化二聚得到单体1,2-二(4-溴苯氧基)六氟环丁烷.该二聚物再与异丙基格氏试剂发生镁交换反应,生成格氏试剂中间体,在催化剂Ni(dppe)Cl2的存在下发生镍催化转移缩聚生成聚合物.研究了反应时间、温度和单体投料比对催化缩聚反应的影响.  相似文献   

13.
首先以葡萄糖为C源,水热法制备了均匀C球,再以乙二醇为溶剂,先后加入醋酸镍、醋酸镁和氯化铈,最终制得Ce-MgNi/C纳米复合储氢材料。采用X射线衍射仪(XRD)分析了溶剂热后复合材料的微观结构,用扫描电镜(SEM)观察了其形貌。通过自动控制的Sieverts设备测试了材料的吸放氢动力学性能。研究表明以均匀C球为载体,预制的Ce、Mg、Ni原子比为2∶1∶2及23∶4∶7的复合材料呈现纳米结构。XRD结果表明,复合材料中出现明显的Ce_2MgNi_2和Ce_(23)Mg_4Ni_7的峰值,并伴随有第二相CeMg_3和CeNi_3出现。通过P-C-T (pressure-composition-temperature)测试实验结果显示,Ce_2MgNi_2/C和Ce_(23)Mg_4Ni_7/C复合材料在50℃下的吸附氢量分别可达到1.54%和1.05%(w/w)。  相似文献   

14.
以天然层状黏土蒙脱石(MMT)为前体,通过液相沉积-沉淀将镍物种引入水溶液中剥离为MMT纳米片表面的简易方法制得Ni/MMT纳米片。该Ni/MMT纳米片由于是二维(2D)结构,利于芳烃及其加氢产物的传质扩散,相比Ni/SBA-15和Ni/γ-Al2O3催化剂,具有更为高效的芳烃加氢性能,且在镍负载量高达18.5%时,其四氢萘加氢的转化频率(TOF)达到最高值。  相似文献   

15.
近年来 ,有关具有生物活性的配体与金属离子的固体配合物的研究引起了人们的重视 [1~ 3 ] 。α-萘乙酸 ( HL)是一种重要的植物激素 ,由于 α-萘乙酸难溶于水常制成盐使用。铜、锌及稀土等与α-萘乙酸的固体配合物已得到研究 ,它们均难溶于水 [2 ,3 ] 。由于钴、镍是植物体的重要营养元素 ,而钴、镍与α-萘乙酸的二元固体配合物及钴、镍与α-萘乙酸和α-呋喃甲醛肟 ( L')的三元固体配合物未见有报道 ,我们对此作了一些研究。1 配合物的合成按文献 [4 ]用 Co Cl2 、Ni Cl2 和 Na HCO3 反应制得 Co CO3 、Ni CO3 ,干燥后取过量 Co CO…  相似文献   

16.
关磊  高威  张祖康  王莹 《无机化学学报》2014,30(5):1187-1194
采用回流法在水溶剂中合成了2个含氮配体单核镍配合物[Ni(phen)2(H2O)2](1,6-nds)·2H2O(1)和[Ni(phen)3](1,6-nds)·10H2O(2)(1,6-nds=1,6-萘二磺酸根离子,phen=1,10-邻菲罗啉)。配合物1中,镍离子与2个1,10-邻菲罗啉和2个水分子配位,形成[Ni(phen)2(H2O)2]2+阳离子。2个没有配位的水分子通过氢键与[Ni(phen)2(H2O)2]2+和1,6-萘二磺酸根离子相互连接形成二维层状结构。配合物2中,镍离子与3个1,10-邻菲罗啉配位,形成[Ni(phen)3]2+阳离子。大量的氢键将自由的水分子和1,6-萘二磺酸根离子连接形成三维网状结构。2个配合物中1,6-萘二磺酸根离子均没有与镍离子配位,只是起到平衡电荷的作用。室温下,配合物显示了较大的荧光发射峰,其最大发射峰分别在443和438 nm。  相似文献   

17.
本文构造了氢-镍相互作用的5参数Morse势, 用经典的对势方法研究氢原子在Ni(100), Ni(111)和Ni(110)面上的吸附和扩散, 得到氢原子在三个表面上的吸附位、吸附几何、结合能及本征振动等数据, 和实验结果符合得很好。同时, 系统地研究了三个体系的吸附扩散势能面结构。  相似文献   

18.
络合滴定法连续测定钨镍铜合金中的镍和铜   总被引:7,自引:0,他引:7  
拟定了用络合滴定法连续测定钨镍铜合金中镍和铜的方法.在两份试液中,一份控制pH≈8,以疏代硫酸钠掩蔽Cu(Ⅱ),氟离子掩蔽W(Ⅵ),用EDTA标准溶液直接滴定Ni(Ⅱ),求得镍含量.另一份在过量氨水介质中,用EDTA标准溶液滴定Ni(Ⅱ)、Cu(Ⅱ),求得镍-铜合量,铜含量由差减法求得.指示剂为紫脲酸铵.方法简便、快速,结果准确可靠.  相似文献   

19.
以硝酸镍为镍源, 磷酸氢二铵为磷源, 介孔分子筛SBA-15为载体, 用共浸渍法制备了含磷化镍前驱体的样品, 然后在氢气流中采用程序升温还原法, 制备了Ni2P质量分数为5%-40%的Ni2P/SBA-15催化剂. 用X射线衍射(XRD)、N2吸附脱附、透射电子显微镜(TEM)、傅立叶变换红外光谱(FTIR)等分析测试技术对催化剂的结构进行了表征, 以噻吩和二苯并噻吩(DBT)为模型化合物, 在微型固定床反应器上对催化剂的加氢脱硫(HDS)性能进行了评价. 结果表明, Ni2P/SBA-15催化剂中SBA-15 的介孔结构依然存在, 活性组分Ni2P具有良好的分散性, 但随Ni2P含量的增加, 催化剂的比表面积、孔容和孔径均有明显减小. 当反应温度为320 ℃时, Ni2P含量为15%-25%(w)的催化剂就具有很好的加氢脱硫催化性能; 反应温度在360 ℃以上时, 所有催化剂都具有优异的深度脱硫催化性能. Ni2P/SBA-15催化剂对二苯并噻吩的加氢脱硫(HDS)主要以直接脱硫机理(DDS)进行.  相似文献   

20.
环烷酸镍的汽油或甲苯溶液呈亮绿色,根据自旋允许d-d跃迁,在光谱的红和兰区有三个吸收带,其峰值分别是403、680和1170nm,络合物具有八面体构型。在Ni-Al体系中,当Al/Ni摩尔比<0.53,只发生配位体的交换反应,Al/Ni≥0.53,体系中发生还原反应,Ni(II)→Ni(I)→Ni(O)。在Ni-B体系中,只发生配位体交换反应,生成的氟-硼-镍络合物具有和环烷酸镍相类似的d-d吸收带,络合物也具有八面体构型。以上结论与磁化率法的结果一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号