首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new potentially hexadentate N4O2 Schiff-base ligands (H2L1, H2L2 and H2L3) were prepared from the reaction of the polyamines N,N′-bis(2-aminophenyl)-1,2-ethanediamine (L1), N,N′-bis(2-aminophenyl)-1,3-propanediamine (L2) and N,N′-bis(2-aminophenyl)-1,4-butanediamine (L3), respectively with salicylaldehyde. Reaction of the Schiff bases with Ni(II) salts in the presence of N(Et)3 gave the neutral complexes [NiL4], [NiL5] and [NiL6]. Ni(II) complexes of the polyamines were also prepared. One of complexes [Ni(L1)(MeCN)2](ClO4)2·MeCN has been characterized through X-ray diffraction methods.  相似文献   

2.
(1,4,7,10-Tetraazacyclododecane) [diamine or (S)-alanine]-cobalt(III) complexes [diamine = ethylenediamine, 2-(aminomethyl)pyridine, (R)-1,2-propanediamine, (R,R)-1,2-diaminocyclohexane, trimethylenediamine and 2-methyl-1,3-diaminopropane] are prepared and characterized spectroscopically. The ligand field transitions occur at lower energies than those of the corresponding tetraamine analogues. Severe distortions caused by the too small size of the cyclic ligand are one of the origins. The distortions also exert influence upon circular dichroism spectra.  相似文献   

3.
Three novel Schiff base cadmium(II) complexes, derived from the end‐on (μ‐1,1‐N3) azide or end‐to‐end (μ‐1,3‐NCS) thio cyanate bridges and similar tridentate Schiff base ligands, have been synthesized under similar synthetic procedures and their crystal structures determined by X‐ray diffraction methods. They are the dinuclear double end‐on azide‐bridged [Cd2(L1)2(N3)2(μ‐1,1‐N3)2] ( 1 ), the dinuclear double end‐on azide‐bridged [Cd2(L2)2(N3)2(μ‐1,1‐N3)2] ( 2 ), and the dinuclear double end‐to‐end thiocyanate‐bridged [Cd2(L3)2(NCS)2(μ1,3‐NCS)2] ( 3 ), where L1, L2 and L3 are three similar tridentate Schiff bases obtained by condensation of 2‐pyridylaldehyde with N,N‐diethylethane‐1,2‐diamine, of 2‐pyridylaldehyde with N‐isopropylethane‐1,2‐diamine, and of 2‐pyridylaldehyde with N,N‐dimethylpropane‐1,3‐diamine, respectively. Each cadmium(II) centre in the complexes is in a distorted octahedral coordination. There is a crystallographic inversion centre in each of the complexes. The similar small ligands used as the secondary ligands in the preparation of the cadmium(II) complexes with similar Schiff bases can result in similar structures.  相似文献   

4.
Two sets of Schiff base ligands, set-1 and set-2 have been prepared by mixing the respective diamine (1,2-propanediamine or 1,3-propanediamine) and carbonyl compounds (2-acetylpyridine or pyridine-2-carboxaldehyde) in 1:1 and 1:2 ratios, respectively and employed for the synthesis of complexes with Ni(II) perchlorate and Ni(II) thiocyanate. Ni(II) perchlorate yields the complexes having general formula [NiL2](ClO4)2 (L = L1 [N1-(1-pyridin-2-yl-ethylidine)-propane-1,3-diamine] for complex 1, L2 [N1-pyridine-2-ylmethylene-propane-1,3-diamine] for complex 2 or L3 [N1-(1-pyridine-2-yl-ethylidine)-propane-1,2-diamine] for complex 3) in which the Schiff bases are mono-condensed terdentate whereas Ni(II) thiocyanate results in the formation of tetradentate Schiff base complexes, [NiL](SCN)2 (L = L4 [N,N′-bis-(1-pyridine-2-yl-ethylidine)-propane-1,3-diamine] for complex 4, L5 [N,N′-bis(pyridine-2-ylmethyline)-propane-1,3-diamine] for complex 5 or L6 [N,N′-bis-(1-pyridine-2-yl-ethylidine)-propane-1,2-diamine] for complex 6) irrespective of the sets of ligands used. Formation of the complexes has been explained by anion modulation of cation templating effect. All the complexes have been characterized by elemental analyses, spectral and electrochemical results. Single crystal X-ray diffraction studies confirm the structures of four representative members, 1, 3, 4 and 5; all of them have distorted octahedral geometry around Ni(II). The bis-complexes of terdentate ligands, 1 and 3 are the mer isomers and the complexes of tetradentate ligands, 4 and 5 possess trans geometry.  相似文献   

5.
Four novel Schiff base nickel(II) and copper(II) complexes, derived from the end‐on (μ1,1‐N3) azide, end‐to‐end (μ1,3‐NCS) thiocyanate, or phenolate oxygen bridges, have been synthesized and their crystal structures determined by X‐ray diffraction methods. They are the dinuclear double end‐on azide‐bridged [Ni2(L1)2(MeCN)2(μ1,1‐N3)2]·MeOH ( 1 ), the dinuclear double end‐on azide‐bridged [Ni2(L2)2(MeOH)2(μ1,1‐N3)2][Ni2(L2)2(OH2)2(μ1,1‐N3)2]·MeOH ( 2 ), the dinuclear double end‐to‐end thiocyanate‐bridged [Cu2(L3)2(μ1,3‐NCS)2] ( 3 ), and the dinuclear double phenolate O‐bridged [Cu2(L4)2(NCS)2] ( 4 ), where HL1, HL2, HL3 and HL4 are four tridentate Schiff bases obtained by the condensation of 3,5‐dibromosalicylaldehyde with N‐ethylethane‐1,2‐diamine, of 3,5‐dichlorosalicylaldehyde with N‐methylpropane‐1,3‐diamine, of 3‐bromo‐5‐chlorosalicylaldehyde with 2‐aminomethylpyridine, and of 5‐nitrosalicylaldehyde with 2‐aminomethylpyridine, respectively. Each nickel(II) atom in 1 and 2 is in an octahedral coordination, while each copper(II) atom in 3 and 4 is in a square pyramidal coordination. There exists crystallographic inversion centre symmetry in each of the complexes.  相似文献   

6.
Four new complexes of UO2(II) and Th(IV) with bis-Schiff bases, derived from N,N'-bis[(l-phenyl-3-methyl-5-oxo-4-pyrazolinyl)-a-furylmethylidyne]-1,2-propylenediimine [1,2-BPMOPFP-H2] and N,N'- bis[(l-phenyl-3-methyl-5-oxo-4-pyrazolinyl)-a-furylmethylidyne]-1,3-propylenediimine [1,3-BPMOPFP-H2], were synthesized and characterized by elemental analysis, IR, UV, 1HNMR spectroscopy, and molar conductivity. The general formula of the complexes was confirmed to be [UO2(BPMOPFP)], [Th(BPMOPFP)(NO3)]NO3. A possible structure for the complexes have been proposed.  相似文献   

7.
The title compounds, trans‐bis(trans‐cyclohexane‐1,2‐diamine)bis(6‐methyl‐2,2,4‐trioxo‐3,4‐dihydro‐1,2,3‐oxathiazin‐3‐ido)copper(II), [Cu(C4H4NO4S)2(C6H14N2)2], (I), and trans‐diaquabis(cyclohexane‐1,2‐diamine)zinc(II) 6‐methyl‐2,2,4‐trioxo‐3,4‐dihydro‐1,2,3‐oxathiazin‐3‐ide dihydrate, [Zn(C6H14N2)2(H2O)2](C4H4NO4S)2·2H2O, (II), are two‐dimensional hydrogen‐bonded supramolecular complexes. In (I), the CuII ion resides on a centre of symmetry in a neutral complex, in a tetragonally distorted octahedral coordination environment comprising four amine N atoms from cyclohexane‐1,2‐diamine ligands and two N atoms of two acesulfamate ligands. Intermolecular N—H...O and C—H...O hydrogen bonds produce R22(12) motif rings which lead to two‐dimensional polymeric networks. In contrast, the ZnII ion in (II) resides on a centre of symmetry in a complex dication with a less distorted octahedral coordination environment comprising four amine N atoms from cyclohexane‐1,2‐diamine ligands and two O atoms from aqua ligands. In (II), an extensive two‐dimensional network of N—H...O, O—H...O and C—H...O hydrogen bonds includes R21(6) and R44(16) motif rings.  相似文献   

8.
The title saccharinate complexes, aqua[1,2‐benzisothiazol‐3(2H)‐onato 1,1‐dioxide‐N]bis(1,10‐phenanthroline‐N,N′)man­ganese(II) 1,2‐benz­isothia­zol‐3(2H)‐onate 1,1‐dioxide,[Mn(C7H4NO3S)(C12H8N2)2(H2O)](C7H4NO3S), and aqua[1,2‐benz­iso­thiazol‐3(2H)‐onato 1,1‐dioxide‐N]­bis­(2,2′‐bi­pyri­dine‐N,N′)­cobalt(II) 1,2‐benz­iso­thia­zol‐3(2H)‐onate 1,1‐di­oxide, [Co­(C7H4NO3S)­(C10H8N2)2­(H2O)]­(C7H4NO3S), have been prepared and their crystal structures determined at 150 K. The structure of the manganese complex consists of repeated alternating [Mn(phen)2(sac)(H2O)]+ cations and non‐coordinated saccharinate anions. The water molecule, bound to manganese as part of a slightly distorted octahedral arrangement, is hydrogen bonded to an O atom of the SO2 group in the saccharinate counter‐ion. In contrast, the cobalt complex has one pseudo‐octahedral [Co(bipy)2(sac)(H2O)]+ cation, with the cobalt‐bound water molecule hydrogen bonded to the N atom of the accompanying free saccharinate anion.  相似文献   

9.
Two pyrazole-based polydentate ligands, 1,3-bis(5-methyl-3-phenylpyrazol-1-yl)-propan-2-ol (Hmppzpo) and 1,3-bis(5-methyl-3-p-isopropylphenylpyrazol-1-yl)-propan-2-ol (Hmcpzpo), have been synthesized. A third ligand, 1,3-bis(3,5-dimethylpyrazol-1-yl)-propan-2-ol (Hdmpzpo), has been synthetically modified. Seven new M(II) coordination compounds of general formula M2L2X2 (M?=?Zn, Ni; X?=?NO3 or ClO4; L?=?dmpzpo, mppzpo or mcpzpo) or MLX (M?=?Pd; L?=?dmpzpo; X?=?Cl) were synthesized and structurally characterized by elemental analysis and FT-IR analysis. The crystal structures of [Zn2(μ-dmpzpo-O,N,N′)2(NO3)2]?·?2H2O (1?·?2H2O), [Ni2(μ-dmpzpo-O,N,N′)2(CH3CN)2](ClO4)2 (2) and Pd(μ-dmpzpo-N,N′)Cl2 (4) were determined by single-crystal X-ray crystallography. The crystal structures show that complexes 1?·?2H2O and 2 are center-symmetric dinuclear compounds, with two metal ions bridged by two alkoxo groups and each metal ion with a distorted square-pyramidal environment. The palladium complex, 4, displayed square-planar coordination geometry around the Pd(II) ion with trans arrangement.  相似文献   

10.
A heterobimetallic cyano-bridged 1D coordination polymer of the composition [Ni(baepn)(μ-NC)Fe(CN)3(NO)(μ-CN)]n·3H2O has been synthesized by the reaction of nickel(II) nitrate hexahydrate, baepn (baepn = N, N′-bis(2-aminoethyl)-1,3-propanediamine), and sodium nitroprusside dihydrate in a methanol–water mixture. The complex was characterized by physicochemical and spectroscopic methods. The crystal structure was established by single-crystal X-ray diffraction analysis. It reveals cyano-bridged heterometallic chains consisting of alternating arrays of Ni(II) and Fe(II) atoms, both being embedded in distorted octahedral environments. Low-temperature susceptibility measurements show the presence of weak antiferromagnetic exchange interactions between paramagnetic Ni(II) centers (J = −0.46 cm−1) through long diamagnetic [Fe(CN)5(NO)]2− bridges. Spin state of the iron atom was established by 57Fe M?ssbauer spectroscopy.  相似文献   

11.
The title compounds, bis­(di­methyl­form­amide)‐1κO,3κO‐bis{μ‐2,2′‐[2,2′‐di­methyl­propane‐1,3‐diyl­bis­(nitrilo­methylidyne)]­diphenolato}‐1κ4N,N′,O,O′:2κ2O,O′;2κ2O,O′:3κ4N,N′,O,O′‐di‐μ‐nitrito‐1:2κ2N:O;2:3κ2O:N‐dinickel(II)­cobalt(II), [CoNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (I), ‐copper(II), [CuNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (II), and ‐manganese(II), [MnNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (III), consist of centrosymmetric linear heterotrinuclear metal complexes. The three complexes are isostructural. There are three bridges across the Ni–M atom pairs (M is Co2+, Cu2+ or Mn2+) in each complex, involving two O atoms of a μ‐N,N′‐bis­(salicyl­idene)‐2,2′di­methyl‐1,3‐propane­diaminate ligand and an N—O moiety of a μ‐nitrito group. The coordination sphere around each metal atom, whether Co2+, Cu2+, Mn2+ or Ni2+, can be described as distorted octahedral. The Ni?M distances are 2.9988 (5) Å in (I), 2.9872 (5) Å in (II) and 3.0624 (8) Å in (III).  相似文献   

12.
The interaction of di(2-picolyl)amine (1) and its secondary N-substituted derivatives, N-(4-pyridylmethyl)-di(2-picolyl)amine (2), N-(4-carboxymethyl-benzyl)-di(2-picolyl)amine (3), N-(4-carboxybenzyl)-di(2-picolyl)amine (4), N-(1-naphthylmethyl)-di(2-picolyl)amine (5), N-(9-anthracenylmethyl)-di(2-picolyl)amine (6), 1,4-bis[di(2-picolyl)aminomethyl]benzene (7), 1,3-bis[di(2-picolyl)aminomethyl]benzene (8) and 2,4,6-tris[di(2-picolyl)amino]triazine (9) with Ni(II) and/or Zn(II) nitrate has resulted in the isolation of [Ni(1)(NO3)2], [Ni(2)(NO3)2], [Ni(3)(NO3)2], [Ni(4)(NO3)2]·CH3CN, [Ni(5)(NO3)2], [Ni(6)(NO3)2], [Ni2(7)(NO3)4], [Ni2(8)(NO3)4], [Ni3(9)(NO3)6]·3H2O, [Zn(3)(NO3)2]·0.5CH3OH, [Zn(5)(NO3)2], [Zn(6)(NO3)2], [Zn(8)(NO3)2] and [Zn2(9)(NO3)4]·0.5H2O. X-ray structures of [Ni(4)(NO3)2]·CH3CN, [Ni(6)(NO3)2] and [Zn(5)(NO3)2] have been obtained. Both nickel complexes exhibit related distorted octahedral coordination geometries in which 4 and 6 are tridentate and bound meridionally via their respective N3-donor sets, with the remaining coordination positions in each complex occupied by a monodentate and a bidentate nitrato ligand. For [Ni(4)(NO3)2]·CH3CN, intramolecular hydrogen bond interactions are present between the carboxylic OH group on one complex and the oxygen of a monodentate nitrate on an adjacent complex such that the complexes are linked in chains which are in turn crosslinked by intermolecular offset π-π stacking between pyridyl rings in adjacent chains. In the case of [Ni(6)(NO3)2], two weak CH?O hydrogen bonds are present between the axial methylene hydrogen atoms on one complex and the oxygen of a monodentate nitrate ligand on a second unit such that four hydrogen bonds link pairs of complexes; in addition, an extensive series of π-π stacking interactions link individual complex units throughout the crystal lattice. The X-ray structure of [Zn(5)(NO3)2] shows that the metal centre once again has a distorted six-coordinated geometry, with the N3-donor set of N-(1-naphthylmethyl)-di(2-picolyl)amine (5) coordinating in a meridional fashion and the remaining coordination positions occupied by a monodentate and a bidentate nitrato ligand. The crystal lattice is stabilized by weak intermolecular interactions between oxygens on the bound nitrato ligands and aromatic CH hydrogens on adjacent complexes; intermolecular π-π stacking between aromatic rings is also present.  相似文献   

13.
Two novel complexes [Zn( L )2·(NO3)2] ( 1 ) and [Ni( L )2·2H2O]·2CH3OH·(NO3)2 ( 2 ) ( L = 2-(2-thiazolyl)-4-methyl-1,2-dihydroquinazoline-N3-oxide) were synthesized successfully and characterized by elemental analysis, as well as various spectroscopic techniques. Specifically, the photoluminescence behavior of complex 1 was explored in different solvents. The structural characterization of both complexes has been determined single-crystal X-ray diffraction. It revealed that the metals in 1 and 2 are chelated by two L ligands in centro-symmetrically fashion and the complexes are counterbalanced by nitrate ions which act as coordinating species in 1 , while two water molecules complete the Ni coordination sphere in 2 . In the crystal structures, the adjacent molecules of complex 1 disclosed a ladder-like 2-D network and 3-D supramolecular self-assembly. Simultaneously, an infinite 1-D chain, 2-D layered skeleton, and even meter-shaped 3-D network of 2 was governed by molecular interactions (H–bonds, C–H⋯π). Most strikingly, the research of antibacterial activity proved that two complexes had good activity against two standard bacteria strains. To ascertain deeply the optimum geometric configurations and detect the frontier molecular orbital energy gaps, density functional theory (DFT) calculations were also investigated. Additionally, analyses of Hirshfeld surfaces (HS) and electrostatic potential (ESP) were also performed to quantify the presence of diverse noncovalent interactions.  相似文献   

14.
Summary Two new series of polynuclear complexes with potentially chelating amine and nitrite as ligands have been synthesized from octahedral dinitritobis(diamine)nickel(II) complexes (diamine = en, pn, tn or chxn). These complexes have been characterized by chemical analysis, electronic and i.r. spectra and magnetic measurements down to nitrogen liquid temperature. An x-ray structural investigation shows one of the starting materials, [Ni(tn)2(NO2)2] to contain NO 2 groups coordinatedvia N(nitro complexes). One of the series of formula [Ni5(diamine)4(NO2)8(OH)2], is pentanuclear, analogous to the en complex, whose structure is known. Another series is the polymeric Ni(amine)2(NO2)X, also an analogue of the en derivative. In the first series, the formation and isolation of the pentanuclear species has been achieved with en, tn, pn and chxn, but in the second series, only polynuclear complexes with en, tn and pn, were obtained. No product could be isolated for the more bulky chxn.  相似文献   

15.
《Polyhedron》1995,14(23-24)
New complexes of bivalent nickel with isopropylxanthates and nitrogen-donor ligands of composition [Ni(Prixa)2(L)], [Ni(Prixa)2(L1)2], [Ni(L2)2](Prixa)2, and [Ni(L3)3] (Prixa)2 have been synthesized, where Prixa = i-C3H7OCS2, L = 1,2-diaminopropane (1,2-pn), N,N,N′,N′=tetramethylethylenediamine (tmen) or 4,4′-bipyridine (4,4′-bipy), L1 = pyridine (py), L2 = diethylenetriamine (dien) and L3 = ethylenediamine (en), 1,2-diaminopropane or 1,10-phenanthroline (phen). The compounds have been characterized by elemental analysis, IR and UV-vis spectroscopy, magnetochemical measurements, molar conductivity and thermal analysis. The compounds containing the complex cation have been one-electron irreversibly oxidized using cyclic voltammetry. The crystal and molecular structures of [Ni(Prixa)2(tmen)] and [Ni(phen)3](Prixa)2 have been elucidated.  相似文献   

16.
A new Schiff base ligand N-(2-hydroxylacetophenone)-3-oxapentane-1,5-diamine (HL) and its Ni complex, [Ni2(L)2(NO3)2], have been synthesized and characterized by physicochemical and spectroscopic methods. The X-ray crystal structure of [Ni2(L)2(NO3)2] shows it to be a dinuclear 2:2 complex, in which each Ni(II) atom is in a distorted octahedral geometry. The two Ni(II) atoms are dibridged by two phenoxo ligands, forming a Ni2O2 parallelogram-type moiety. The interactions between free HL and the complex with calf thymus DNA have been investigated, and the binding constant and linear Stern–Volmer quenching constant suggest that the two compounds bind to DNA via the intercalation mode. The binding affinity of the complex was higher than that of HL. Antioxidant assays in vitro showed that the Ni(II) complex possesses significant antioxidant activity.  相似文献   

17.
The reaction of N1,N1′‐(ethane‐1,2‐diyl)bis(propane‐1,3‐diamine) (bapen), K2[Ni(CN)4]·H2O and dimethylformamide in the presence of Gd(NO3)3·6H2O under solvothermal conditions yielded yellow crystals of dicyanido(2,3,4,6,7,9,10,11‐octahydropyrimido[2′,1′:3,4]pyrazino[1,2‐a]pyrimidine)nickel(II) hemihydrate, [Ni(CN)2(C10H16N4)]·0.5H2O, (I), the crystal structure of which is composed of [Ni(CN)2(pdpm)] molecules (pdpm is 2,3,4,6,7,9,10,11‐octahydropyrimido[2′,1′:3,4]pyrazino[1,2‐a]pyrimidine) on general positions linked by O—H...N hydrogen bonds to water molecules located on twofold axes. This structural unit is further linked by nonclassical C—H...N interactions to form a warped two‐dimensional net perpendicular to the unit‐cell b axis. The nets are stacked, with C—H...O contacts joining successive units. The NiII cation is coordinated with square‐planar geometry by a chelating pdpm ligand and two cyanide ligands in mutually cis positions. Complex (I) is stable up to 360 K, at which point dehydration takes place; the ligands start to decompose at 558 K.  相似文献   

18.
Reaction of the N-(2-pyridyl)carbonylaniline ligand (L) with Cu(NO3)2, Cu(ClO4)2, Zn(ClO4)2, Ni(NO3)2 and PdCl2 gives complexes with stoichiometry [Cu(L)2(H2O)2](NO3)2, [Cu(L)2(H2O)2](ClO4)2, [Zn(L)2(H2O)2] (ClO4)2, [Ni(L)2(H2O)Cl](NO3) and PdLCl2. The new complexes were characterized by elemental analyses and infrared spectra. The crystal structures of [Cu(L)2(H2O)2](NO3)2, [Cu(L)2(H2O)2](ClO4)2, and [Zn(L)2(H2O)2](ClO4)2 were determined by X-ray crystallography. The cation complexes [M(L)2(H2O)2] contain copper(II) and zinc(II) with distorted octahedral geometry with two N-(2-pyridyl)carbonylaniline (L) ligands occupying the equatorial sites. The hexa-coordinated metal atoms are bonded to two pyridinic nitrogens, two carbonyl oxygens and two water molecules occupying the axial sites. Both the coordinated water molecules and uncoordinated amide NH groups of the N-(2-pyridyl)carbonylaniline (L) ligands are involved in hydrogen bonding, resulting in infinite hydrogen-bonded chains running in one and two-dimensions.  相似文献   

19.
The isotypic compounds tris(1,2‐ethanedi­amine‐N,N′)­zinc(II) triiodide iodide, [Zn(C2H8N2)3](I3)I, and tris(1,2‐ethanedi­amine‐N,N′)­nickel(II) triiodide iodide, [Ni(C2H8N2)3](I3)I, contain the octahedral [M(en)3]2+ cation, with M = Zn and Ni, in both enantiomeric forms, an essentially linear triiodide anion and an iodide anion. The geometries of the complex ions are as expected, e.g.d(Ni—N) = 2.123 (5), 2.127 (6) and 2.134 (5) Å, and d(Zn—N) = 2.176 (4), 2.193 (4) and 2.210 (4) Å. The shortest contact between the triiodide and iodide ions is 3.979 (1) Å for the nickel compound and 4.013 (1) Å for the zinc compound.  相似文献   

20.
trans‐Di­aqua­bis­(iso­quinoline‐1‐carboxyl­ato‐κ2N,O)­cobalt(II) dihydrate, [Co(C10H6NO2)2(H2O)2]·2H2O, and trans‐di­aqua­bis­(iso­quinoline‐1‐carboxyl­ato‐κ2N,O)­nickel(II) dihydrate, [Ni(C10H6NO2)2(H2O)2]·2H2O, contain the same isoquinoline ligand, with both metal atoms residing on a centre of symmetry and having the same distorted octahedral coordination. In the former complex, the Co—O(water) bond length in the axial direction is 2.167 (2) Å, which is longer than the Co—O(carboxylate) and Co—N bond lengths in the equatorial plane [2.055 (2) and 2.096 (2) Å, respectively]. In the latter complex, the corresponding bond lengths for Ni—O(water), Ni—O(carboxylate) and Ni—N are 2.127 (2), 2.036 (2) and 2.039 (3) Å, respectively. Both crystals are stabilized by similar stacking interactions of the ligand, and also by hydrogen bonds between the hydrate and coordinated water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号