首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the synergistic influences of synthesis methods (solid-state reaction vs. sol-gel process) and Zr4+ doping on the structure and ionic conductivity of perovskite-structured Li0.5La0.5TiO3 (LLTO) solid electrolytes. The lithium-ion conductivity of Li0.5La0.5Ti1???x Zr x O3 ceramic specimens was evaluated as a function of x value and compared carefully between those two synthesis methods. Regarding the conductivity, sol-gel process is better for the synthesis of LLTO than solid-state reaction. As a result, the highest grain conductivity is obtained in the sol-gel-derived pure LLTO sample with x?=?0, reaching 1.10?×?10?3 S?·?cm?1. Partial substitution of Zr4+ enlarges the LLTO’s grain aggregate size and increases the total superficial area of aggregates. Consequently, Zr4+ substitution not only affects the grain (bulk) conductivity, but more importantly, also improves the grain boundary conductivity and the total conductivity. The highest total conductivity is 5.84?×?10?5 S?·?cm?1 with x?=?0.04 by sol-gel process.  相似文献   

2.
《Solid State Ionics》1988,31(1):5-8
LiBrLiI mixed crystals and LiBrAl2O3 composites have been studied by means of complex impedance analysis an conductivity, X-ray diffraction, DTA and SEM techniques. The substitution of wrong size I ions in LiBr increases the conductivity and decreases the migration energy of Li-ion vacancies. These results are consistent with those of the KBr-KI system and earlier predictions. LiBrAl2O3 composites exhibit a sharp increase in the conductivity. The highest conductivity obtained was ≈10−3 Ω−1 cm−1 at 302°C for LiBr + 10 m/o Al2O3.  相似文献   

3.
崔万秋  阮立坚 《物理学报》1987,36(3):322-331
本文对Li2O-P2O5-V2O5系统非晶态中的几组试样进行了电导率、核磁共振及顺磁共振测试。实验分析表明非晶态的log(σΤ)-1/Τ曲线都是由两个直线段构成。电导率在转变温度以后的“晶化前期”异常增大,这归因于该阶段非晶态结构有序化程度增加所致,利用ESR实验结果对非晶态进行钒离子价态分析表明,该系统非晶态中钒离子仅以V4+和V5+状态存在。固定P< 关键词:  相似文献   

4.
《Solid State Ionics》1987,24(1):81-88
Electrical conductivity data have been determined for a series of x Ag2O(1 − x)Li2OB2O3P2O5 glasses. The progressive substitution of Li+ by Ag+ considerably decreases the ionic conductivity which shows a minimum at Ag/(Ag + Li) = 0.4. This behaviour becomes intense as the temperature is lowered. This mixed cationic effect is further characterised by activation energy and conductivity relaxation time going to a maxima where conductivity minima occurs. ac conductivity and electric modulus response of those glasses are discussed.  相似文献   

5.
《Solid State Ionics》1987,24(4):327-331
Electrical conductivity measurements by ac methods were made of various fluoride glasses to explore glasses with faster fluoride-ion conduction. One of the measurements was made on ZrF4BaF2CsF glasses in which some of the fluoride-ions were substituted by the chloride, bromide, iodide and oxide ions. All of these substitutions resulted in a decrease in conductivity. The magnitude of the decrease was in proportion to the substituted fluoride-ion concentration, regardless of the substituent species. This may be explained by a blocking effect of the introduced anions of the fluoride-ion motion. Other electrical conductivity measurements were made of ternary and/or quaternary glasses of the ZrF4, HfF4, ZnF2, ScF3, MnF2 GaF3, FeF3 and InF3based fluoride systems. Remarkably high conductivities were observed in the InF3, FeF3 and GaF3based glasses containing appreciable amounts of PbF2 as one of the glass constituents. Among these highly conductive glasses 35InF3·30SnF2·35PbF2 glass exhibited extremely high conductivity, e.g., 6.3×10−4 S cm−1 at 150 °C. This conductivity value is about 102 times the highest conductivity value thus far reported for fluorozirconate glasses and is higher than that of a crystalline material with fast fluoride-ion condition, β-PbF2.  相似文献   

6.
The superionic conductivity and dielectric response of heavily doped fluorite-structured Ba1−xRxF2+x (R=La, Pr, Nd, Gd, Tb, Y, Sc; x=0.005–0.45) crystals are reported. The highest ionic conductivity is found for R=Sc and x=0.1. Upon ScF3 doping, small Sc3+ ions rearrange their surroundings, create excessive fluoride interstitial ions and bring about a high ionic conductivity. For each dopant, the concentration dependence of the ionic conductivity is non-linear. A monotonous concentration dependence of the ionic conductivity is found only for La3+ doping. Upon doping with Nd3+, Gd3+, Tb3+, Y3+ and Sc3+ ions, a conductivity maximum is observed at x=0.1–0.2. Upon Pr3+ doping, this maximum is split. The influence of defect clustering on the concentration dependence of the conductivity is discussed. Paper presented at the 6th Euroconference on Solid State Ionics, Cetraro, Calabria, Italy, Sept. 12–19, 1999.  相似文献   

7.
《Solid State Ionics》1986,20(1):61-68
Electrical conductivity data are reported for solid solutions of Na2SO4, K2WO4, Na2WO4, Na2MoO4, Rb2SO4, Na4SiO4 and Gd2 (SO4)3. In all cases, except K2SO4, we observed an increase in Na+ conductivity effected by lattice expansion and/or incorporation of ion vacancies in addition to a structural transformation. Boundary conditions were shown to exist for these factors to yield a limiting Na+ conductivity with a constant fraction of Na+ based on a percolation model of transport. The higher conductivity data observed for the larger radius isovalent WO2-4 and aliovalent SiO4-4 doped Na2SO4 show conclusively that the anion-rotation ”cogwheel” mechanism does not contribute to the cationic conductivity in Na2SO4.  相似文献   

8.
The defect fluorite region of the ternary system ZrO2-Y2O3-TiO2 encompasses compositions which offer both, good electronic and oxygen ion conductivity which enable good catalytic activity for the direct oxidation of methane in a solid oxide fuel cell (SOFC). The electrical properties of compositions YxTiyZr1−(x+y)O2−x/2 (with x=0.15, 0.2, 0.25 and y=0.15, 0.18) were characterised in order to find the composition with highest ionic and electronic conductivity. High titanium dopant concentrations (Y) of 15 and 18 atom%, near the solubility limit of Ti4+ in the fluorite structure, have been introduced to achieve a high electronic conductivity at low oxygen partial pressure. The yttrium content x has been varied between 15 and 25 atom% to find the fluorite composition with the highest ionic conductivity for each titanium level. In the pO2-range from 0.21 to 10−13 atm the conductivity is predominantly ionic and constant over that range. The maximum ionic conductivity is 0.01 Scm−1 for the compositions, which contain 15 atom% yttrium. Substantial electronic conductivity is introduced into the system at low oxygen pressures below 10−13 atm via reduction of Ti4+ ions to Ti3+. The maximum electronic conductivity of 0.2 Scm−1 at 930 °C has been measured for a sample with 18 atom% titanium. The slope of all log(σ) vs. log(pO2) plots follows a pO 2 −1/4 -dependence. Paper presented at the 5th Euroconference on Solid State Ionics, Benalmádena, Spain, Sept. 13–20, 1998.  相似文献   

9.
崔华  袁启华  崔万秋 《物理学报》1987,36(12):1557-1563
本文研究了AlF3-K2NbOF5系列玻璃导电性。通过对AlF3-K2NbOF5系列玻璃的Raman光谱研究,初步确认了玻璃的结构。根据结构随组成的变化情况,进一步讨论了玻璃的电导率。AlF3-K2NbOF5二元系玻璃,当AlF3的含量在21—29mol%范围内时,Al3+关键词:  相似文献   

10.
The ionic conduction properties of undoped and doped Tl4HgI6 were investigated using electrical conductivity, dielectrics, differential scanning calorimetry, and X-ray diffraction techniques. The heavy Tl+-ions diffusion was activated at high temperature, whereas low conductivity at the lower temperature suggested electronic contribution in undoped Tl4HgI6. The partial replacement of heavy Tl+ ion by suitable cations (Ag+ and Cu+) enhanced the conductivity by several orders of magnitude, whereas diminution in conductivity results with increasing dopants’ concentration in Tl4HgI6. These results can be interpreted in terms of a lattice contraction and vacancy–vacancy interaction (leading to the cluster formation), respectively. The dielectric values of undoped Tl4HgI6 system gradually increasing with temperature, followed by a sharp change, were observed around 385 K and can be explained on the basis of increasing number of space charge polarization and ions jump orientation effects. The activation energy of undoped and doped Tl4HgI6 systems were calculated, and it was found that ionic conductivity activation energy for 5 mol% of cation dopants is much lower than that of undoped one, and also 10 mol% doped Tl4HgI6 systems.  相似文献   

11.
本文通过对11B核磁共振(11B-NMR)、红外光谱等实验方法,研究了LiF-LiCl-B2O3三元系统玻璃的结构和离子导电性,着重于F-离子在玻璃网络中所起的作用,以及F-,Cl-和Li+离子对导电率的影响。LiF-LiCl-B2O3三元系统玻璃,随LiF含量的增加,B由三角体向四面体变化,从而F-离子进入网络,使玻璃结构由[B2O3]三角体层状结构向三维空间延展,形成了含有[BO3F]基团的三维空间网络,Cl-离子以游离的离子存在于网络中,起着松散网络的作用,对提高电导率有利,而Li+离子作为传导离子,对电导率的贡献是主要的。本系统玻璃的电导率是随LiF,LiCl含量的增加而增大,在300℃时测得电导率σ=6.12×10-4Ω-1·cm-1关键词:  相似文献   

12.
Samples of stoichiometry (AgI)4(PbI2)1?x (CdI2) x , (0 ≤ x ≤ 0.4), have been prepared and studied by electrical conductivity, X-ray powder diffraction and DSC techniques. The ionic conductivity of samples was found to increase with temperature, and an abrupt increase at phase transition temperature was observed. The Cd+2-doped samples exhibited lower phase transition temperature compared to that of the pure samples. The ionic conductivity decreases with an increase in Cd+2 content in pre-transition, while enhances in conductivity result in Cd+2 content samples of x ≤ 0.2 in the post-transition region. Different resources of investigation confirmed the solubility limit of Cd+2 in the high-temperature phase to be x = 0.2. The change in the ionic conductivity of Cd+2-doped samples is explained by the increase in the defect concentration and the free volume available in the lattice. The drop in phase transition temperature of Cd2+-doped systems is attributed to the lattice distortion and the increase in the defect–defect interaction.  相似文献   

13.
《Solid State Ionics》2006,177(33-34):2839-2844
The tracer diffusivities of 22Na and 45Ca in two high-quality silica glasses produced by the Deutsche Glastechnische Gesellschaft as standard glasses I and II have been measured in the temperature range between 473 K and 783 K. The temperature dependences of the tracer diffusion coefficients in both glasses follow Arrhenius laws. The diffusion of 22Na is more than six orders of magnitude faster than the diffusion of 45Ca. The ionic conductivity was determined by frequency-dependent impedance spectroscopy and the conductivity diffusion coefficient Dσ was deduced from the dc conductivity via the Nernst–Einstein relation. The temperature dependences of Dσ for both glasses follow also Arrhenius functions. The activation parameters and pre-exponential factors for tracer diffusion and for conductivity diffusion were determined. The activation enthalpy of 22Na and the activation enthalpy of the dc conductivity are equal, showing that the conductivity of standard glasses is due to the motion of Na ions. The viscosity diffusivities Dη were determined from available viscosity data using the Stokes–Einstein relation. They are considerably slower than both tracer diffusivities. The Haven ratios HR are temperature independent for both glasses. The diffusivities of 22Na and 45Ca in soda-lime glasses increase with increasing Na2O content.  相似文献   

14.
Results of temperature and frequency dependent a.c. conductivity of pure and nickel-doped a-As2S3 are reported. The a.c. conductivity of pure As2S3 obeys a well-known relationship: σacω s. Frequency exponents is found to decrease with increasing temperature. Correlated barrier hopping (CBH) model successfully explains the entire behaviour of a.c. conductivity with respect to temperature and frequency for pure As2S3. But a different behaviour of a.c. conductivity has been observed for the nickel doped As2S3. At higher temperatures, distinct peaks have been observed in the plots of temperature dependence of a.c. conductivity. The frequency dependent behaviour of a.c. conductivity (σacω s) for nickeldoped As2S3 is similar to pure As2S3 at lower temperatures. But at higher temperatures, ln σac vs lnf curves have been found to deviate from linearity. Such a behaviour has been explained by assuming that nickel doping gives rise to some neutral defect states (D 0′) in the band gap. Single polaron hopping is expected to occur between theseD 0‘ andD + states. Furthermore, allD +,D 0′ pairs are assumed to be equivalent, having a fixed relaxation time at a given temperature. The contribution of this relaxation to a.c. conductivity is found to be responsible for the observed peak in the plots of temperature dependence of a.c. conductivity for nickel-doped As2S3. The entire behaviour of a.c. conductivity with respect to temperature and frequency has been explained by using CBH and “simple pair” models. Theoretical results obtained by using these models, have been found to be in agreement with the experimental results.  相似文献   

15.
Nano-composite polymer electrolytes containing poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), ammonium tetrafluoroborate (NH4BF4), and nano-size fumed silica (SiO2) have been prepared and characterized by complex impedance spectroscopy. Ionic conductivity of polymer has been found to increase with the addition of NH4BF4, and a maximum conductivity of 3.62 × 10?6 S/cm has been obtained at 30 wt% NH4BF4. The formation of ion aggregates at high concentration of salt has been explained by Bjerrum’s law and mass action considerations. The conductivity of polymer electrolytes has been increased by three orders of magnitude (10?6 to 10?3 S/cm) with the addition of plasticizer, and a maximum conductivity of 1.10 × 10?3 S/cm has been observed at 80 wt% DMA. An increase in conductivity with the addition of nano-size fumed silica is attributed due to the formation of space-charge layers. A maximum conductivity of 7.20 × 10?3 S/cm has been observed for plasticized nano-composite polymer electrolytes at 3 wt% SiO2. X-ray diffraction analysis of polymer electrolyte system was also carried out. A small change in conductivity of nano-composite polymer electrolytes observed over the 30–130 °C temperature range and for a period of 30 days is also desirable for their use in various applications.  相似文献   

16.
The ionic conductivity of single crystals of tysonite-type solid solutions La1?xBaxF3?x(0?x?0.095) has been studied parallel and perpendicular to the crystallographic c axis in the temperature range 293–1300 K. Three regions can be discerned in the compositional dependence of the ionic conductivity: (i) the “pure” crystal, in which at room temperature no exchange occurs between different types of anion sites in the tysonite structure; (ii) an intermediate region(0 < x < 7 × 10-2) which reveals changes in both the conductivity activation enthalpy and the magnitude of the conductivity; (iii) a concentrated solid-solution region (x > 7 × 10-2), where fluoride ions interchange easily among the different anion sublattices. Diffusion coefficients calculated from ionic conductivity results, are in good agreement with those calculated from 19F NMR measurements. Using the present data, along with 19F NMR data, dielectric relaxation data and structural considerations, mechanisms governing the ionic conductivity are proposed.  相似文献   

17.
In order to improve the conductivity of ceria-based solid electrolytes, effect of co-doped Gd3+ and Dy3+ was evaluated. For this purpose, nano-crystalline Gd0.2???x Dy x Ce0.8O1.9 powders with various composition ranges (x?=?0.05, 0.1, 0.15, 0.2) were initially synthesized by high-energy milling method. The effect of micro-structural evolution and co-doping on electrical properties of the dense sintered samples fabricated by two-step sintering and conventional sintering of the synthesized powders were investigated. Electrical conductivity of the samples was discussed based on the results obtained by AC impedance spectroscopy at temperatures in the range of 300–700 °C. The co-doping and sintering regime were found to significantly influence the conductivity of the electrolytes. The electrical conductivity of the co-doped samples depends on Dy3+ content and the maximum conductivity obtained by 0.15 mol% Dy and 0.05 mol% Gd. The conductivity of Gd0.2???x Dy x Ce0.8O1.9 (x?=?0.15) was 0.03 S/cm at 700 °C. A thorough discussion was made, based on the present experimental data.  相似文献   

18.
The thermal conductivity of (La0.25Pr0.75)0.7Ca0.3MnO3 manganite has been studied. The isotope substitution of 18O for 16O in this compound leads to a ferromagnetic-antiferromagnetic phase transition at low temperatures. It has been found that the thermal conductivity in the ferromagnetic state is approximately two times higher than in the antiferromagnetic state. It has been shown that the small value of thermal conductivity and its temperature dependence can be due to strong phonon scattering from crystal lattice defects, which are thought of as Jahn-Teller distortions. The parameters of this scattering can be determined within the Debye model of thermal conductivity from a comparison of samples differing in their isotope composition.  相似文献   

19.
The ionic conductivity of single crystals of the fluorite-structured solid solutions Ba1?xLaxF2+x(10?3 <×<0.45) has been studied as a function of temperature and composition in the range 300–900 K. Three regions can be discerned in the concentration dependence of the ionic conductivity: a dilute concentration region (x<10?3), where classic relations between solute content and ionic conductivity hold; an intermediate concentration region (10?3<x?5×10?2), where large changes occur in the conductivity activation enthalpy and the magnitude of the conductivity; and a concentrated solid solution region (x?5×10?2) characterized by enhanced ionic motion. In the dilute region the migration enthalpy for interstitial fluoride ions is determined to be 0.714 eV, while a value of 0.39 eV is found for the (LaBaFi)X association enthalpy. The defect chemistry in the intermediate concentration region is shown to be controlled by a superlinear increase of the concentration of mobile defects, while in the concentrated solid solution region a composition-independent amount of ≈1 mole% of interstitial fluoride ions with enhanced mobility, carry the current.  相似文献   

20.
The study of electric conductivity in the whole range of compositions of mixed LiI1?x Brx crystals has shown that doping of pure lithium halide (LiI or LiBr) by homovalent substitution leads to an increase in conductivity. This enhancement is essentially pronounced in the solid solution domains near the compositions of pure compounds (x < 0.15 and x > 0.90). Maximum conductivity is attained for the two phase composition LiI0.75Br0.25 (5 × 10?7 S cm?1 at 293 K) compared to those of starting compounds (4 × 10?8: LiI and 9 × 10?9: LiBr at 293 K). An Arrhenius behaviour of the conductivity evolution versus the inverse of the temperature shows that variations in conductivity are related to those of the activation energy whose minimum is close to 8.7 Kcal mole?1. Lattice strain involved by substituting anions of different raddi could be the factor which increase the defect population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号